Upload modeling_alinlight.py with huggingface_hub
Browse files- modeling_alinlight.py +245 -0
modeling_alinlight.py
ADDED
|
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# Copyright 2026 EngineerGL Research.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
import math
|
| 17 |
+
import torch
|
| 18 |
+
import torch.nn as nn
|
| 19 |
+
import torch.nn.functional as F
|
| 20 |
+
from typing import Optional, Tuple, List, Union
|
| 21 |
+
from transformers import PreTrainedModel
|
| 22 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast, BaseModelOutputWithPast
|
| 23 |
+
from transformers import GenerationMixin
|
| 24 |
+
from configuration_alinlight import AlinlightConfig # Импортируем конфиг из соседнего файла
|
| 25 |
+
|
| 26 |
+
class AlinlightRMSNorm(nn.Module):
|
| 27 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 28 |
+
super().__init__()
|
| 29 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 30 |
+
self.eps = eps
|
| 31 |
+
def forward(self, x):
|
| 32 |
+
input_dtype = x.dtype
|
| 33 |
+
x = x.to(torch.float32)
|
| 34 |
+
variance = x.pow(2).mean(-1, keepdim=True)
|
| 35 |
+
x = x * torch.rsqrt(variance + self.eps)
|
| 36 |
+
return self.weight * x.to(input_dtype)
|
| 37 |
+
|
| 38 |
+
class AlinlightRotaryEmbedding(nn.Module):
|
| 39 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
| 40 |
+
super().__init__()
|
| 41 |
+
self.dim = dim
|
| 42 |
+
self.base = base
|
| 43 |
+
self.max_position_embeddings = max_position_embeddings
|
| 44 |
+
self.scaling_factor = scaling_factor
|
| 45 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.float32).to(device) / self.dim))
|
| 46 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 47 |
+
self._set_cos_sin_cache(seq_len=max_position_embeddings, device=device, dtype=torch.get_default_dtype())
|
| 48 |
+
|
| 49 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 50 |
+
t = torch.arange(seq_len, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
| 51 |
+
t = t / self.scaling_factor
|
| 52 |
+
freqs = torch.outer(t, self.inv_freq)
|
| 53 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 54 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
| 55 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
| 56 |
+
|
| 57 |
+
def forward(self, x, seq_len=None):
|
| 58 |
+
if seq_len > self.cos_cached.shape[0]:
|
| 59 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
| 60 |
+
return self.cos_cached[:seq_len].to(dtype=x.dtype), self.sin_cached[:seq_len].to(dtype=x.dtype)
|
| 61 |
+
|
| 62 |
+
def rotate_half(x):
|
| 63 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 64 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 65 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 66 |
+
|
| 67 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 68 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
| 69 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
| 70 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 71 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 72 |
+
return q_embed, k_embed
|
| 73 |
+
|
| 74 |
+
class AlinlightMLP(nn.Module):
|
| 75 |
+
def __init__(self, config):
|
| 76 |
+
super().__init__()
|
| 77 |
+
self.hidden_size = config.hidden_size
|
| 78 |
+
self.intermediate_size = config.intermediate_size
|
| 79 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 80 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 81 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 82 |
+
self.act_fn = nn.SiLU()
|
| 83 |
+
|
| 84 |
+
def forward(self, x):
|
| 85 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 86 |
+
|
| 87 |
+
class AlinlightAttention(nn.Module):
|
| 88 |
+
def __init__(self, config, layer_idx: Optional[int] = None):
|
| 89 |
+
super().__init__()
|
| 90 |
+
self.config = config
|
| 91 |
+
self.layer_idx = layer_idx
|
| 92 |
+
self.hidden_size = config.hidden_size
|
| 93 |
+
self.num_heads = config.num_attention_heads
|
| 94 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 95 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 96 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 97 |
+
self.sliding_window = config.sliding_window
|
| 98 |
+
self.attention_dropout = config.attention_dropout
|
| 99 |
+
|
| 100 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
| 101 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
| 102 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
| 103 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
| 104 |
+
|
| 105 |
+
def forward(self, hidden_states, attention_mask=None, position_ids=None, past_key_value=None, output_attentions=False, use_cache=False, cos_sin=None):
|
| 106 |
+
bsz, q_len, _ = hidden_states.size()
|
| 107 |
+
query_states = self.q_proj(hidden_states)
|
| 108 |
+
key_states = self.k_proj(hidden_states)
|
| 109 |
+
value_states = self.v_proj(hidden_states)
|
| 110 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 111 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 112 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 113 |
+
|
| 114 |
+
if cos_sin is not None:
|
| 115 |
+
cos, sin = cos_sin
|
| 116 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 117 |
+
|
| 118 |
+
if past_key_value is not None:
|
| 119 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
| 120 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
| 121 |
+
|
| 122 |
+
# Truncation logic for sliding window
|
| 123 |
+
if self.sliding_window is not None and key_states.shape[2] > self.sliding_window:
|
| 124 |
+
key_states = key_states[:, :, -self.sliding_window:, :]
|
| 125 |
+
value_states = value_states[:, :, -self.sliding_window:, :]
|
| 126 |
+
|
| 127 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
| 128 |
+
|
| 129 |
+
if self.num_key_value_groups > 1:
|
| 130 |
+
key_states = key_states[:, :, None, :, :].expand(bsz, self.num_key_value_heads, self.num_key_value_groups, key_states.shape[-2], self.head_dim).reshape(bsz, self.num_heads, key_states.shape[-2], self.head_dim)
|
| 131 |
+
value_states = value_states[:, :, None, :, :].expand(bsz, self.num_key_value_heads, self.num_key_value_groups, value_states.shape[-2], self.head_dim).reshape(bsz, self.num_heads, value_states.shape[-2], self.head_dim)
|
| 132 |
+
|
| 133 |
+
# Use Scaled Dot Product Attention
|
| 134 |
+
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask=None, dropout_p=0.0, is_causal=True)
|
| 135 |
+
attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, q_len, self.hidden_size)
|
| 136 |
+
return self.o_proj(attn_output), None, past_key_value
|
| 137 |
+
|
| 138 |
+
class AlinlightDecoderLayer(nn.Module):
|
| 139 |
+
def __init__(self, config, layer_idx: int):
|
| 140 |
+
super().__init__()
|
| 141 |
+
self.self_attn = AlinlightAttention(config, layer_idx=layer_idx)
|
| 142 |
+
self.mlp = AlinlightMLP(config)
|
| 143 |
+
self.input_layernorm = AlinlightRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 144 |
+
self.post_attention_layernorm = AlinlightRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 145 |
+
|
| 146 |
+
def forward(self, hidden_states, attention_mask=None, position_ids=None, past_key_value=None, output_attentions=False, use_cache=False, cos_sin=None):
|
| 147 |
+
residual = hidden_states
|
| 148 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 149 |
+
hidden_states, _, present_key_value = self.self_attn(hidden_states, attention_mask, position_ids, past_key_value, output_attentions, use_cache, cos_sin)
|
| 150 |
+
hidden_states = residual + hidden_states
|
| 151 |
+
residual = hidden_states
|
| 152 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 153 |
+
hidden_states = self.mlp(hidden_states)
|
| 154 |
+
hidden_states = residual + hidden_states
|
| 155 |
+
return hidden_states, None, present_key_value
|
| 156 |
+
|
| 157 |
+
class AlinlightModel(PreTrainedModel):
|
| 158 |
+
config_class = AlinlightConfig
|
| 159 |
+
def __init__(self, config: AlinlightConfig):
|
| 160 |
+
super().__init__(config)
|
| 161 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
|
| 162 |
+
self.layers = nn.ModuleList([AlinlightDecoderLayer(config, layer_idx=i) for i in range(config.num_hidden_layers)])
|
| 163 |
+
self.norm = AlinlightRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 164 |
+
|
| 165 |
+
scaling_factor = 1.0
|
| 166 |
+
if config.rope_scaling and config.rope_scaling.get("type") == "linear":
|
| 167 |
+
scaling_factor = config.rope_scaling.get("factor", 1.0)
|
| 168 |
+
|
| 169 |
+
self.rotary_emb = AlinlightRotaryEmbedding(config.hidden_size // config.num_attention_heads, max_position_embeddings=config.max_position_embeddings, base=config.rope_theta, scaling_factor=scaling_factor)
|
| 170 |
+
|
| 171 |
+
def forward(self, input_ids=None, past_key_values=None, use_cache=None, **kwargs):
|
| 172 |
+
if input_ids is not None:
|
| 173 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 174 |
+
else:
|
| 175 |
+
inputs_embeds = kwargs.get("inputs_embeds")
|
| 176 |
+
|
| 177 |
+
seq_len = inputs_embeds.shape[1]
|
| 178 |
+
if past_key_values is not None:
|
| 179 |
+
seq_len += past_key_values[0][0].shape[2]
|
| 180 |
+
|
| 181 |
+
cos, sin = self.rotary_emb(inputs_embeds, seq_len=seq_len)
|
| 182 |
+
|
| 183 |
+
position_ids = kwargs.get("position_ids")
|
| 184 |
+
if position_ids is None:
|
| 185 |
+
position_ids = torch.arange(seq_len - inputs_embeds.shape[1], seq_len, dtype=torch.long, device=inputs_embeds.device)
|
| 186 |
+
position_ids = position_ids.unsqueeze(0).expand(inputs_embeds.shape[0], -1)
|
| 187 |
+
|
| 188 |
+
hidden_states = inputs_embeds
|
| 189 |
+
next_decoder_cache = () if use_cache else None
|
| 190 |
+
|
| 191 |
+
for idx, layer in enumerate(self.layers):
|
| 192 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
| 193 |
+
layer_outputs = layer(hidden_states, position_ids=position_ids, past_key_value=past_key_value, use_cache=use_cache, cos_sin=(cos, sin))
|
| 194 |
+
hidden_states = layer_outputs[0]
|
| 195 |
+
if use_cache:
|
| 196 |
+
next_decoder_cache += (layer_outputs[2],)
|
| 197 |
+
|
| 198 |
+
hidden_states = self.norm(hidden_states)
|
| 199 |
+
|
| 200 |
+
return BaseModelOutputWithPast(
|
| 201 |
+
last_hidden_state=hidden_states,
|
| 202 |
+
past_key_values=next_decoder_cache
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
class AlinlightForCausalLM(PreTrainedModel, GenerationMixin):
|
| 206 |
+
config_class = AlinlightConfig
|
| 207 |
+
_keys_to_ignore_on_load_missing = ["model.rotary_emb.inv_freq"]
|
| 208 |
+
|
| 209 |
+
def __init__(self, config):
|
| 210 |
+
super().__init__(config)
|
| 211 |
+
self.model = AlinlightModel(config)
|
| 212 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 213 |
+
self.lm_head.weight = self.model.embed_tokens.weight
|
| 214 |
+
|
| 215 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
|
| 216 |
+
if past_key_values:
|
| 217 |
+
input_ids = input_ids[:, -1:]
|
| 218 |
+
|
| 219 |
+
position_ids = kwargs.get("position_ids", None)
|
| 220 |
+
if position_ids is None:
|
| 221 |
+
if past_key_values:
|
| 222 |
+
past_length = past_key_values[0][0].shape[2]
|
| 223 |
+
position_ids = torch.tensor([[past_length]], dtype=torch.long, device=input_ids.device)
|
| 224 |
+
else:
|
| 225 |
+
position_ids = torch.arange(input_ids.shape[1], dtype=torch.long, device=input_ids.device).unsqueeze(0)
|
| 226 |
+
|
| 227 |
+
return {
|
| 228 |
+
"input_ids": input_ids,
|
| 229 |
+
"past_key_values": past_key_values,
|
| 230 |
+
"use_cache": True,
|
| 231 |
+
"position_ids": position_ids
|
| 232 |
+
}
|
| 233 |
+
|
| 234 |
+
def forward(self, input_ids=None, past_key_values=None, labels=None, **kwargs):
|
| 235 |
+
outputs = self.model(input_ids=input_ids, past_key_values=past_key_values, **kwargs)
|
| 236 |
+
hidden_states = outputs.last_hidden_state
|
| 237 |
+
logits = self.lm_head(hidden_states)
|
| 238 |
+
|
| 239 |
+
loss = None
|
| 240 |
+
if labels is not None:
|
| 241 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 242 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 243 |
+
loss = F.cross_entropy(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))
|
| 244 |
+
|
| 245 |
+
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values)
|