Quoc Bao Bui commited on
Commit
e762c44
·
1 Parent(s): a7eb3c4

Update README

Browse files
Files changed (1) hide show
  1. README.md +50 -1
README.md CHANGED
@@ -1,3 +1,52 @@
1
  ---
2
- license: openrail
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: creativeml-openrail-m
3
+ tags:
4
+ - stable-diffusion
5
+ - stable-diffusion-diffusers
6
+ - text-to-image
7
+ - endpoints-template
8
+ inference: false
9
+ duplicated_from: philschmid/stable-diffusion-v1-4-endpoints
10
  ---
11
+ # Fork of [CompVis/stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4)
12
+ > Stable Diffusion is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input.
13
+ > For more information about how Stable Diffusion functions, please have a look at [🤗's Stable Diffusion with 🧨Diffusers blog](https://huggingface.co/blog/stable_diffusion).
14
+ For more information about the model, license and limitations check the original model card at [CompVis/stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4).
15
+ ### License (CreativeML OpenRAIL-M)
16
+ The full license can be found here: https://huggingface.co/spaces/CompVis/stable-diffusion-license
17
+ ---
18
+ This repository implements a custom `handler` task for `text-to-image` for 🤗 Inference Endpoints. The code for the customized pipeline is in the [pipeline.py](https://huggingface.co/philschmid/stable-diffusion-v1-4-endpoints/blob/main/handler.py).
19
+ There is also a [notebook](https://huggingface.co/philschmid/stable-diffusion-v1-4-endpoints/blob/main/create_handler.ipynb) included, on how to create the `handler.py`
20
+ ### expected Request payload
21
+ ```json
22
+ {
23
+ "inputs": "A prompt used for image generation"
24
+ }
25
+ ```
26
+ below is an example on how to run a request using Python and `requests`.
27
+ ## Run Request
28
+ ```python
29
+ import json
30
+ from typing import List
31
+ import requests as r
32
+ import base64
33
+ from PIL import Image
34
+ from io import BytesIO
35
+ ENDPOINT_URL = ""
36
+ HF_TOKEN = ""
37
+ # helper decoder
38
+ def decode_base64_image(image_string):
39
+ base64_image = base64.b64decode(image_string)
40
+ buffer = BytesIO(base64_image)
41
+ return Image.open(buffer)
42
+ def predict(prompt:str=None):
43
+ payload = {"inputs": code_snippet,"parameters": parameters}
44
+ response = r.post(
45
+ ENDPOINT_URL, headers={"Authorization": f"Bearer {HF_TOKEN}"}, json={"inputs": prompt}
46
+ )
47
+ resp = response.json()
48
+ return decode_base64_image(resp["image"])
49
+ prediction = predict(
50
+ prompt="the first animal on the mars"
51
+ )
52
+ ```