Commit
·
1448af2
1
Parent(s):
eb601f1
Add evaluations
Browse filesFive eval plots and minor formatting changes
README.md
CHANGED
|
@@ -21,13 +21,13 @@ same data, in the exact same order. All Pythia models are available
|
|
| 21 |
The Pythia model suite was deliberately designed to promote scientific
|
| 22 |
research on large language models, especially interpretability research.
|
| 23 |
Despite not centering downstream performance as a design goal, we find the
|
| 24 |
-
models match or exceed the performance of
|
| 25 |
-
such as those in the OPT and GPT-Neo suites.
|
| 26 |
|
| 27 |
Please note that all models in the *Pythia* suite were renamed in January
|
| 28 |
2023. For clarity, a <a href="#naming-convention-and-parameter-count">table
|
| 29 |
comparing the old and new names</a> is provided in this model card, together
|
| 30 |
-
with exact
|
| 31 |
|
| 32 |
## Pythia-12B
|
| 33 |
|
|
@@ -143,8 +143,7 @@ tokenizer.decode(tokens[0])
|
|
| 143 |
```
|
| 144 |
|
| 145 |
Revision/branch `step143000` corresponds exactly to the model checkpoint on
|
| 146 |
-
the `main` branch of each model
|
| 147 |
-
|
| 148 |
For more information on how to use all Pythia models, see [documentation on
|
| 149 |
GitHub](https://github.com/EleutherAI/pythia).
|
| 150 |
|
|
@@ -163,15 +162,11 @@ methodology, and a discussion of ethical implications. Consult [the
|
|
| 163 |
datasheet](https://arxiv.org/abs/2201.07311) for more detailed documentation
|
| 164 |
about the Pile and its component datasets. The Pile can be downloaded from
|
| 165 |
the [official website](https://pile.eleuther.ai/), or from a [community
|
| 166 |
-
mirror](https://the-eye.eu/public/AI/pile/)
|
| 167 |
-
|
| 168 |
The Pile was **not** deduplicated before being used to train Pythia-12B.
|
| 169 |
|
| 170 |
#### Training procedure
|
| 171 |
|
| 172 |
-
Pythia uses the same tokenizer as [GPT-NeoX-
|
| 173 |
-
20B](https://huggingface.co/EleutherAI/gpt-neox-20b).
|
| 174 |
-
|
| 175 |
All models were trained on the exact same data, in the exact same order. Each
|
| 176 |
model saw 299,892,736,000 tokens during training, and 143 checkpoints for each
|
| 177 |
model are saved every 2,097,152,000 tokens, spaced evenly throughout training.
|
|
@@ -185,21 +180,46 @@ checkpoints every 500 steps. The checkpoints on Hugging Face are renamed for
|
|
| 185 |
consistency with all 2M batch models, so `step1000` is the first checkpoint
|
| 186 |
for `pythia-1.4b` that was saved (corresponding to step 500 in training), and
|
| 187 |
`step1000` is likewise the first `pythia-6.9b` checkpoint that was saved
|
| 188 |
-
(corresponding to 1000 “actual” steps)
|
| 189 |
-
|
| 190 |
See [GitHub](https://github.com/EleutherAI/pythia) for more details on training
|
| 191 |
procedure, including [how to reproduce
|
| 192 |
-
it](https://github.com/EleutherAI/pythia/blob/main/README.md#reproducing-training)
|
|
|
|
|
|
|
| 193 |
|
| 194 |
### Evaluations
|
| 195 |
|
| 196 |
All 16 *Pythia* models were evaluated using the [LM Evaluation
|
| 197 |
Harness](https://github.com/EleutherAI/lm-evaluation-harness). You can access
|
| 198 |
the results by model and step at `results/json/*` in the [GitHub
|
| 199 |
-
repository](https://github.com/EleutherAI/pythia/tree/main/results/json)
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
### Naming convention and parameter count
|
| 205 |
|
|
|
|
| 21 |
The Pythia model suite was deliberately designed to promote scientific
|
| 22 |
research on large language models, especially interpretability research.
|
| 23 |
Despite not centering downstream performance as a design goal, we find the
|
| 24 |
+
models <a href="#evaluations">match or exceed</a> the performance of
|
| 25 |
+
similar and same-sized models, such as those in the OPT and GPT-Neo suites.
|
| 26 |
|
| 27 |
Please note that all models in the *Pythia* suite were renamed in January
|
| 28 |
2023. For clarity, a <a href="#naming-convention-and-parameter-count">table
|
| 29 |
comparing the old and new names</a> is provided in this model card, together
|
| 30 |
+
with exact parameter counts.
|
| 31 |
|
| 32 |
## Pythia-12B
|
| 33 |
|
|
|
|
| 143 |
```
|
| 144 |
|
| 145 |
Revision/branch `step143000` corresponds exactly to the model checkpoint on
|
| 146 |
+
the `main` branch of each model.<br>
|
|
|
|
| 147 |
For more information on how to use all Pythia models, see [documentation on
|
| 148 |
GitHub](https://github.com/EleutherAI/pythia).
|
| 149 |
|
|
|
|
| 162 |
datasheet](https://arxiv.org/abs/2201.07311) for more detailed documentation
|
| 163 |
about the Pile and its component datasets. The Pile can be downloaded from
|
| 164 |
the [official website](https://pile.eleuther.ai/), or from a [community
|
| 165 |
+
mirror](https://the-eye.eu/public/AI/pile/).<br>
|
|
|
|
| 166 |
The Pile was **not** deduplicated before being used to train Pythia-12B.
|
| 167 |
|
| 168 |
#### Training procedure
|
| 169 |
|
|
|
|
|
|
|
|
|
|
| 170 |
All models were trained on the exact same data, in the exact same order. Each
|
| 171 |
model saw 299,892,736,000 tokens during training, and 143 checkpoints for each
|
| 172 |
model are saved every 2,097,152,000 tokens, spaced evenly throughout training.
|
|
|
|
| 180 |
consistency with all 2M batch models, so `step1000` is the first checkpoint
|
| 181 |
for `pythia-1.4b` that was saved (corresponding to step 500 in training), and
|
| 182 |
`step1000` is likewise the first `pythia-6.9b` checkpoint that was saved
|
| 183 |
+
(corresponding to 1000 “actual” steps).<br>
|
|
|
|
| 184 |
See [GitHub](https://github.com/EleutherAI/pythia) for more details on training
|
| 185 |
procedure, including [how to reproduce
|
| 186 |
+
it](https://github.com/EleutherAI/pythia/blob/main/README.md#reproducing-training).<br>
|
| 187 |
+
Pythia uses the same tokenizer as [GPT-NeoX-
|
| 188 |
+
20B](https://huggingface.co/EleutherAI/gpt-neox-20b).
|
| 189 |
|
| 190 |
### Evaluations
|
| 191 |
|
| 192 |
All 16 *Pythia* models were evaluated using the [LM Evaluation
|
| 193 |
Harness](https://github.com/EleutherAI/lm-evaluation-harness). You can access
|
| 194 |
the results by model and step at `results/json/*` in the [GitHub
|
| 195 |
+
repository](https://github.com/EleutherAI/pythia/tree/main/results/json).<br>
|
| 196 |
+
Expand the sections below to see plots of evaluation results for all
|
| 197 |
+
Pythia and Pythia-deduped models compared with OPT and BLOOM.
|
| 198 |
+
|
| 199 |
+
<details>
|
| 200 |
+
<summary>LAMBADA – OpenAI</summary>
|
| 201 |
+
<img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/lambada_openai.png" style="width:auto"/>
|
| 202 |
+
</details>
|
| 203 |
+
|
| 204 |
+
<details>
|
| 205 |
+
<summary>Physical Interaction: Question Answering (PIQA)</summary>
|
| 206 |
+
<img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/piqa.png" style="width:auto"/>
|
| 207 |
+
</details>
|
| 208 |
+
|
| 209 |
+
<details>
|
| 210 |
+
<summary>WinoGrande</summary>
|
| 211 |
+
<img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/winogrande.png" style="width:auto"/>
|
| 212 |
+
</details>
|
| 213 |
+
|
| 214 |
+
<details>
|
| 215 |
+
<summary>AI2 Reasoning Challenge—Challenge Set</summary>
|
| 216 |
+
<img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/arc_challenge.png" style="width:auto"/>
|
| 217 |
+
</details>
|
| 218 |
+
|
| 219 |
+
<details>
|
| 220 |
+
<summary>SciQ</summary>
|
| 221 |
+
<img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/sciq.png" style="width:auto"/>
|
| 222 |
+
</details>
|
| 223 |
|
| 224 |
### Naming convention and parameter count
|
| 225 |
|