Lawrence-cj commited on
Commit
544cf9c
·
verified ·
1 Parent(s): c916384

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +133 -0
README.md ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sana
3
+ tags:
4
+ - text-to-image
5
+ - SANA-1.5
6
+ - 1024px_based_image_size
7
+ - BF16
8
+ - diffusers
9
+ language:
10
+ - en
11
+ - zh
12
+ base_model:
13
+ - Efficient-Large-Model/SANA1.5_4800M_1024px_diffusers
14
+ pipeline_tag: text-to-image
15
+ ---
16
+ <p align="center" style="border-radius: 10px">
17
+ <img src="https://raw.githubusercontent.com/NVlabs/Sana/refs/heads/main/asset/logo.png" width="35%" alt="logo"/>
18
+ </p>
19
+
20
+ <div style="display:flex;justify-content: center">
21
+ <a href="https://huggingface.co/collections/Efficient-Large-Model/sana-15-67d6803867cb21c230b780e4"><img src="https://img.shields.io/static/v1?label=Demo&message=Huggingface&color=yellow"></a> &ensp;
22
+ <a href="https://github.com/NVlabs/Sana"><img src="https://img.shields.io/static/v1?label=Code&message=Github&color=blue&logo=github"></a> &ensp;
23
+ <a href="https://nvlabs.github.io/Sana/Sana-1.5/"><img src="https://img.shields.io/static/v1?label=Project&message=Github&color=blue&logo=github-pages"></a> &ensp;
24
+ <!-- <a href="https://hanlab.mit.edu/projects/sana/"><img src="https://img.shields.io/static/v1?label=Page&message=MIT&color=darkred&logo=github-pages"></a> &ensp; -->
25
+ <a href="https://arxiv.org/abs/2501.18427"><img src="https://img.shields.io/static/v1?label=Arxiv&message=Sana&color=red&logo=arxiv"></a> &ensp;
26
+ <a href="https://nv-sana.mit.edu/"><img src="https://img.shields.io/static/v1?label=Demo&message=MIT&color=yellow"></a> &ensp;
27
+ <a href="https://discord.gg/rde6eaE5Ta"><img src="https://img.shields.io/static/v1?label=Discuss&message=Discord&color=purple&logo=discord"></a> &ensp;
28
+ </div>
29
+
30
+ # 🐱 Sana Model Card
31
+
32
+ ## Model
33
+
34
+ <p align="center" border-raduis="10px">
35
+ <img src="https://nvlabs.github.io/Sana/Sana-1.5/asset/content/pipeline.png" width="80%" alt="teaser_page1"/>
36
+ </p>
37
+
38
+ We introduce **SANA-1.5**,an efficient model with scaling of training-time and inference time techniques.
39
+ SANA-1.5 delivers: **efficient model growth** from 1.6B Sana-1.0 model to 4.8B, achieving similar or better performance than training from scratch and saving 60% training cost;
40
+ **efficient model depth pruning**, slimming any model size as you want;
41
+ powerful VLM selection based **inference scaling**, smaller model+inference scaling > larger model;
42
+ Top-notch GenEval & DPGBench results. Detailed results are shown in the below table.
43
+
44
+ <p align="center" border-raduis="10px">
45
+ <img src="https://nvlabs.github.io/Sana/Sana-1.5/asset/content/geneval_comparison.png" alt="model growth performance on GenEval" class="inserted-image"
46
+ style="max-width: 45%; height: auto; display: inline-block;">
47
+ <img src="https://nvlabs.github.io/Sana/Sana-1.5/asset/content/optimizer_loss_comparison_with_ema.png" alt="8-bit optimizer" class="inserted-image"
48
+ style="max-width: 45%; height: auto; display: inline-block;">
49
+ </p>
50
+
51
+ Source code is available at https://github.com/NVlabs/Sana.
52
+
53
+ ### Model Description
54
+
55
+ - **Developed by:** NVIDIA, Sana
56
+ - **Model type:** Scalable Linear-Diffusion-Transformer-based text-to-image generative model
57
+ - **Model size:** 4.8B parameters
58
+ - **Model precision:** torch.bfloat16 (BF16)
59
+ - **Model resolution:** This model is developed to generate 1024px based images with multi-scale heigh and width.
60
+ - **License:** [NSCL v2-custom](./LICENSE.txt). Governing Terms: NVIDIA License. Additional Information: [Gemma Terms of Use | Google AI for Developers](https://ai.google.dev/gemma/terms) for Gemma-2-2B-IT, [Gemma Prohibited Use Policy | Google AI for Developers](https://ai.google.dev/gemma/prohibited_use_policy).
61
+ - **Model Description:** This is a model that can be used to generate and modify images based on text prompts.
62
+ It is a Linear Diffusion Transformer that uses one fixed, pretrained text encoders ([Gemma2-2B-IT](https://huggingface.co/google/gemma-2-2b-it))
63
+ and one 32x spatial-compressed latent feature encoder ([DC-AE](https://hanlab.mit.edu/projects/dc-ae)).
64
+ - **Resources for more information:** Check out our [GitHub Repository](https://github.com/NVlabs/Sana) and the [Sana report on arXiv](https://arxiv.org/abs/2410.10629).
65
+
66
+ ### Model Sources
67
+
68
+ For research purposes, we recommend our `generative-models` Github repository (https://github.com/NVlabs/Sana),
69
+ which is more suitable for both training and inference and for which most advanced diffusion sampler like Flow-DPM-Solver is integrated.
70
+ [MIT Han-Lab](https://nv-sana.mit.edu/) provides free Sana inference.
71
+ - **Repository:** ttps://github.com/NVlabs/Sana
72
+ - **Demo:** https://nv-sana.mit.edu/
73
+
74
+ ### 🧨 Diffusers
75
+ Under construction [PR](https://github.com/huggingface/diffusers/pull/11074)
76
+
77
+ ```python
78
+ import torch
79
+ from diffusers import SanaPipeline
80
+
81
+ pipe = SanaPipeline.from_pretrained(
82
+ "Efficient-Large-Model/SANA1.5_4.8B_1024px_diffusers",
83
+ torch_dtype=torch.bfloat16,
84
+ )
85
+ pipe.to("cuda")
86
+
87
+ pipe.text_encoder.to(torch.bfloat16)
88
+
89
+ # pipe.enable_model_cpu_offload()
90
+
91
+ prompt = 'Self-portrait oil painting, a beautiful cyborg with golden hair, 8k'
92
+ image = pipe(
93
+ prompt=prompt,
94
+ height=1024,
95
+ width=1024,
96
+ guidance_scale=4.5,
97
+ num_inference_steps=20,
98
+ )[0]
99
+
100
+ image[0].save(f"sana1.5.png")
101
+ ```
102
+
103
+ ## Uses
104
+
105
+ ### Direct Use
106
+
107
+ The model is intended for research purposes only. Possible research areas and tasks include
108
+
109
+ - Generation of artworks and use in design and other artistic processes.
110
+ - Applications in educational or creative tools.
111
+ - Research on generative models.
112
+ - Safe deployment of models which have the potential to generate harmful content.
113
+
114
+ - Probing and understanding the limitations and biases of generative models.
115
+
116
+ Excluded uses are described below.
117
+
118
+ ### Out-of-Scope Use
119
+
120
+ The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.
121
+
122
+ ## Limitations and Bias
123
+
124
+ ### Limitations
125
+
126
+
127
+ - The model does not achieve perfect photorealism
128
+ - The model cannot render complex legible text
129
+ - fingers, .etc in general may not be generated properly.
130
+ - The autoencoding part of the model is lossy.
131
+
132
+ ### Bias
133
+ While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.