File size: 6,153 Bytes
fddeec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caa51e5
fddeec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
library_name: sana
tags:
- text-to-image
- SANA-1.5
- 1024px_based_image_size
- BF16
- diffusers
language:
- en
- zh
base_model:
- Efficient-Large-Model/SANA1.5_1.6B_1024px_diffusers
pipeline_tag: text-to-image
---
<p align="center" style="border-radius: 10px">
  <img src="https://raw.githubusercontent.com/NVlabs/Sana/refs/heads/main/asset/logo.png" width="35%" alt="logo"/>
</p>

<div style="display:flex;justify-content: center">
  <a href="https://huggingface.co/collections/Efficient-Large-Model/sana-15-67d6803867cb21c230b780e4"><img src="https://img.shields.io/static/v1?label=Weights&message=Huggingface&color=yellow"></a> &ensp;
  <a href="https://github.com/NVlabs/Sana"><img src="https://img.shields.io/static/v1?label=Code&message=Github&color=blue&logo=github"></a> &ensp;
  <a href="https://nvlabs.github.io/Sana/Sana-1.5/"><img src="https://img.shields.io/static/v1?label=Project&message=Github&color=blue&logo=github-pages"></a> &ensp;
  <!-- <a href="https://hanlab.mit.edu/projects/sana/"><img src="https://img.shields.io/static/v1?label=Page&message=MIT&color=darkred&logo=github-pages"></a> &ensp; -->
  <a href="https://arxiv.org/abs/2501.18427"><img src="https://img.shields.io/static/v1?label=Arxiv&message=SANA-1.5&color=red&logo=arxiv"></a> &ensp;
  <a href="https://nv-sana.mit.edu/"><img src="https://img.shields.io/static/v1?label=Demo&message=MIT&color=yellow"></a> &ensp;
  <a href="https://discord.gg/rde6eaE5Ta"><img src="https://img.shields.io/static/v1?label=Discuss&message=Discord&color=purple&logo=discord"></a> &ensp;
</div>

# 🐱 Sana Model Card

## Model

<p align="center" border-raduis="10px">
  <img src="https://nvlabs.github.io/Sana/Sana-1.5/asset/content/pipeline.png" width="80%" alt="teaser_page1"/>
</p>

We introduce **SANA-1.5**,an efficient model with scaling of training-time and inference time techniques. 
SANA-1.5 delivers: **efficient model growth** from 1.6B Sana-1.0 model to 4.8B, achieving similar or better performance than training from scratch and saving 60% training cost; 
**efficient model depth pruning**, slimming any model size as you want; 
powerful VLM selection based **inference scaling**, smaller model+inference scaling > larger model; 
Top-notch GenEval & DPGBench results. Detailed results are shown in the below table.

<p align="center" border-raduis="10px">
  <img src="https://nvlabs.github.io/Sana/Sana-1.5/asset/content/geneval_comparison.png" alt="model growth performance on GenEval" class="inserted-image"
       style="max-width: 45%; height: auto; display: inline-block;">
  <img src="https://nvlabs.github.io/Sana/Sana-1.5/asset/content/optimizer_loss_comparison_with_ema.png" alt="8-bit optimizer" class="inserted-image"
       style="max-width: 45%; height: auto; display: inline-block;">
</p>

Source code is available at https://github.com/NVlabs/Sana.

### Model Description

- **Developed by:** NVIDIA, Sana
- **Model type:** Scalable Linear-Diffusion-Transformer-based text-to-image generative model
- **Model size:** 1.6B parameters
- **Model precision:** torch.bfloat16 (BF16)
- **Model resolution:** This model is developed to generate 1024px based images with multi-scale heigh and width.
- **License:** [NSCL v2-custom](./LICENSE.txt). Governing Terms:  NVIDIA License.  Additional Information:  [Gemma Terms of Use  |  Google AI for Developers](https://ai.google.dev/gemma/terms) for Gemma-2-2B-IT, [Gemma Prohibited Use Policy  |  Google AI for Developers](https://ai.google.dev/gemma/prohibited_use_policy).
- **Model Description:** This is a model that can be used to generate and modify images based on text prompts. 
It is a Linear Diffusion Transformer that uses one fixed, pretrained text encoders ([Gemma2-2B-IT](https://huggingface.co/google/gemma-2-2b-it))
and one 32x spatial-compressed latent feature encoder ([DC-AE](https://hanlab.mit.edu/projects/dc-ae)).
- **Resources for more information:** Check out our [GitHub Repository](https://github.com/NVlabs/Sana) and the [SANA-1.5 report on arXiv](https://arxiv.org/abs/2501.18427).

### Model Sources

For research purposes, we recommend our `generative-models` Github repository (https://github.com/NVlabs/Sana), 
which is more suitable for both training and inference and for which most advanced diffusion sampler like Flow-DPM-Solver is integrated.
[MIT Han-Lab](https://nv-sana.mit.edu/) provides free Sana inference.
- **Repository:** ttps://github.com/NVlabs/Sana
- **Demo:** https://nv-sana.mit.edu/

### 🧨 Diffusers 
Under construction [PR](https://github.com/huggingface/diffusers/pull/11074)

```python
import torch
from diffusers import SanaPipeline

pipe = SanaPipeline.from_pretrained(
    "Efficient-Large-Model/SANA1.5_1.6B_1024px_diffusers",
    torch_dtype=torch.bfloat16,
)
pipe.to("cuda")

pipe.text_encoder.to(torch.bfloat16)

# pipe.enable_model_cpu_offload()

prompt = 'Self-portrait oil painting, a beautiful cyborg with golden hair, 8k'
image = pipe(
    prompt=prompt,
    height=1024,
    width=1024,
    guidance_scale=4.5,
    num_inference_steps=20,
)[0]

image[0].save(f"sana1.5.png")
```

## Uses

### Direct Use

The model is intended for research purposes only. Possible research areas and tasks include

- Generation of artworks and use in design and other artistic processes.
- Applications in educational or creative tools.
- Research on generative models.
- Safe deployment of models which have the potential to generate harmful content.

- Probing and understanding the limitations and biases of generative models.

Excluded uses are described below.

### Out-of-Scope Use

The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.

## Limitations and Bias

### Limitations


- The model does not achieve perfect photorealism
- The model cannot render complex legible text
- fingers, .etc in general may not be generated properly.
- The autoencoding part of the model is lossy.

### Bias
While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.