File size: 15,788 Bytes
0d5f0eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
---
library_name: peft
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
datasets:
- biobert_json
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: xml-roberta-large-16size
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xml-roberta-large-16size

This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the biobert_json dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0772
- Precision: 0.9394
- Recall: 0.9575
- F1: 0.9484
- Accuracy: 0.9814

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 3055
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0586        | 0.0327 | 20   | 0.0947          | 0.9408    | 0.9376 | 0.9392 | 0.9777   |
| 0.0957        | 0.0654 | 40   | 0.1089          | 0.9094    | 0.9434 | 0.9261 | 0.9715   |
| 0.077         | 0.0980 | 60   | 0.0997          | 0.9080    | 0.9434 | 0.9253 | 0.9729   |
| 0.0833        | 0.1307 | 80   | 0.0997          | 0.9148    | 0.9405 | 0.9275 | 0.9747   |
| 0.133         | 0.1634 | 100  | 0.1056          | 0.9167    | 0.9323 | 0.9244 | 0.9721   |
| 0.1114        | 0.1961 | 120  | 0.1093          | 0.9034    | 0.9351 | 0.9190 | 0.9710   |
| 0.0885        | 0.2288 | 140  | 0.0952          | 0.9266    | 0.9406 | 0.9335 | 0.9771   |
| 0.0822        | 0.2614 | 160  | 0.1081          | 0.9107    | 0.9410 | 0.9256 | 0.9730   |
| 0.0839        | 0.2941 | 180  | 0.0946          | 0.9157    | 0.9567 | 0.9357 | 0.9755   |
| 0.0829        | 0.3268 | 200  | 0.1040          | 0.8927    | 0.9509 | 0.9209 | 0.9713   |
| 0.0925        | 0.3595 | 220  | 0.0975          | 0.9004    | 0.9515 | 0.9253 | 0.9735   |
| 0.1239        | 0.3922 | 240  | 0.1035          | 0.8965    | 0.9485 | 0.9218 | 0.9727   |
| 0.0817        | 0.4248 | 260  | 0.0891          | 0.9211    | 0.9493 | 0.9350 | 0.9761   |
| 0.0772        | 0.4575 | 280  | 0.0879          | 0.9189    | 0.9512 | 0.9348 | 0.9762   |
| 0.0817        | 0.4902 | 300  | 0.0786          | 0.9345    | 0.9490 | 0.9417 | 0.9793   |
| 0.0849        | 0.5229 | 320  | 0.0925          | 0.9160    | 0.9277 | 0.9218 | 0.9735   |
| 0.1045        | 0.5556 | 340  | 0.0985          | 0.8888    | 0.9336 | 0.9106 | 0.9708   |
| 0.0932        | 0.5882 | 360  | 0.0844          | 0.9178    | 0.9576 | 0.9373 | 0.9771   |
| 0.0844        | 0.6209 | 380  | 0.0819          | 0.9217    | 0.9627 | 0.9417 | 0.9776   |
| 0.0768        | 0.6536 | 400  | 0.0960          | 0.9089    | 0.9593 | 0.9334 | 0.9742   |
| 0.0723        | 0.6863 | 420  | 0.0877          | 0.9148    | 0.9534 | 0.9337 | 0.9755   |
| 0.0817        | 0.7190 | 440  | 0.0906          | 0.9159    | 0.9445 | 0.9299 | 0.9743   |
| 0.085         | 0.7516 | 460  | 0.0780          | 0.9138    | 0.9406 | 0.9270 | 0.9761   |
| 0.0911        | 0.7843 | 480  | 0.0862          | 0.9279    | 0.9569 | 0.9422 | 0.9777   |
| 0.0818        | 0.8170 | 500  | 0.0796          | 0.9309    | 0.9464 | 0.9386 | 0.9779   |
| 0.0568        | 0.8497 | 520  | 0.0908          | 0.9192    | 0.9484 | 0.9336 | 0.9763   |
| 0.0763        | 0.8824 | 540  | 0.0901          | 0.9181    | 0.9545 | 0.9360 | 0.9766   |
| 0.0874        | 0.9150 | 560  | 0.0956          | 0.9084    | 0.9509 | 0.9292 | 0.9742   |
| 0.0809        | 0.9477 | 580  | 0.0929          | 0.9020    | 0.9586 | 0.9294 | 0.9741   |
| 0.094         | 0.9804 | 600  | 0.0777          | 0.9339    | 0.9491 | 0.9415 | 0.9793   |
| 0.0913        | 1.0131 | 620  | 0.0937          | 0.9090    | 0.9482 | 0.9282 | 0.9724   |
| 0.0488        | 1.0458 | 640  | 0.1043          | 0.8994    | 0.9445 | 0.9214 | 0.9724   |
| 0.0627        | 1.0784 | 660  | 0.0789          | 0.9312    | 0.9581 | 0.9445 | 0.9801   |
| 0.0573        | 1.1111 | 680  | 0.0927          | 0.9149    | 0.9577 | 0.9359 | 0.9759   |
| 0.0643        | 1.1438 | 700  | 0.0870          | 0.9192    | 0.9599 | 0.9391 | 0.9772   |
| 0.0784        | 1.1765 | 720  | 0.0788          | 0.9334    | 0.9567 | 0.9449 | 0.9796   |
| 0.0656        | 1.2092 | 740  | 0.0869          | 0.9313    | 0.9424 | 0.9368 | 0.9776   |
| 0.0814        | 1.2418 | 760  | 0.0841          | 0.9296    | 0.9552 | 0.9423 | 0.9787   |
| 0.0878        | 1.2745 | 780  | 0.0831          | 0.9214    | 0.9507 | 0.9358 | 0.9776   |
| 0.0755        | 1.3072 | 800  | 0.0890          | 0.9314    | 0.9494 | 0.9403 | 0.9781   |
| 0.0751        | 1.3399 | 820  | 0.0881          | 0.9183    | 0.9342 | 0.9262 | 0.9750   |
| 0.0599        | 1.3725 | 840  | 0.0848          | 0.9262    | 0.9318 | 0.9290 | 0.9749   |
| 0.0653        | 1.4052 | 860  | 0.0826          | 0.9243    | 0.9556 | 0.9397 | 0.9785   |
| 0.0683        | 1.4379 | 880  | 0.0861          | 0.9239    | 0.9459 | 0.9348 | 0.9774   |
| 0.0811        | 1.4706 | 900  | 0.0847          | 0.9113    | 0.9539 | 0.9321 | 0.9751   |
| 0.0583        | 1.5033 | 920  | 0.0790          | 0.9273    | 0.9500 | 0.9385 | 0.9771   |
| 0.0483        | 1.5359 | 940  | 0.0779          | 0.9296    | 0.9501 | 0.9397 | 0.9792   |
| 0.0828        | 1.5686 | 960  | 0.0812          | 0.9274    | 0.9537 | 0.9403 | 0.9775   |
| 0.0652        | 1.6013 | 980  | 0.0847          | 0.9190    | 0.9393 | 0.9290 | 0.9775   |
| 0.0619        | 1.6340 | 1000 | 0.0989          | 0.9171    | 0.9455 | 0.9311 | 0.9746   |
| 0.0558        | 1.6667 | 1020 | 0.0837          | 0.9276    | 0.9581 | 0.9426 | 0.9782   |
| 0.0564        | 1.6993 | 1040 | 0.0905          | 0.9148    | 0.9569 | 0.9354 | 0.9761   |
| 0.0473        | 1.7320 | 1060 | 0.0818          | 0.9339    | 0.9561 | 0.9449 | 0.9795   |
| 0.0622        | 1.7647 | 1080 | 0.0898          | 0.9074    | 0.9382 | 0.9226 | 0.9753   |
| 0.0589        | 1.7974 | 1100 | 0.0799          | 0.9375    | 0.9483 | 0.9429 | 0.9800   |
| 0.078         | 1.8301 | 1120 | 0.0824          | 0.9271    | 0.9550 | 0.9409 | 0.9773   |
| 0.0624        | 1.8627 | 1140 | 0.0761          | 0.9388    | 0.9487 | 0.9437 | 0.9801   |
| 0.0656        | 1.8954 | 1160 | 0.0833          | 0.9191    | 0.9425 | 0.9307 | 0.9763   |
| 0.0608        | 1.9281 | 1180 | 0.0851          | 0.9315    | 0.9587 | 0.9449 | 0.9795   |
| 0.0697        | 1.9608 | 1200 | 0.0916          | 0.9233    | 0.9539 | 0.9384 | 0.9764   |
| 0.0676        | 1.9935 | 1220 | 0.0794          | 0.9247    | 0.9537 | 0.9390 | 0.9790   |
| 0.0488        | 2.0261 | 1240 | 0.0738          | 0.938     | 0.9543 | 0.9461 | 0.9811   |
| 0.09          | 2.0588 | 1260 | 0.0799          | 0.9388    | 0.9489 | 0.9438 | 0.9804   |
| 0.0518        | 2.0915 | 1280 | 0.0782          | 0.9358    | 0.9585 | 0.9470 | 0.9807   |
| 0.0359        | 2.1242 | 1300 | 0.0769          | 0.9328    | 0.9556 | 0.9441 | 0.9805   |
| 0.0379        | 2.1569 | 1320 | 0.0829          | 0.9397    | 0.9502 | 0.9450 | 0.9804   |
| 0.0766        | 2.1895 | 1340 | 0.0875          | 0.9118    | 0.9460 | 0.9286 | 0.9759   |
| 0.0458        | 2.2222 | 1360 | 0.0856          | 0.9244    | 0.9588 | 0.9413 | 0.9780   |
| 0.0469        | 2.2549 | 1380 | 0.0945          | 0.9167    | 0.9557 | 0.9358 | 0.9752   |
| 0.0565        | 2.2876 | 1400 | 0.0886          | 0.9318    | 0.9417 | 0.9367 | 0.9768   |
| 0.0636        | 2.3203 | 1420 | 0.0810          | 0.9357    | 0.9543 | 0.9449 | 0.9801   |
| 0.044         | 2.3529 | 1440 | 0.0803          | 0.9375    | 0.9502 | 0.9438 | 0.9807   |
| 0.0576        | 2.3856 | 1460 | 0.0776          | 0.9373    | 0.9569 | 0.9470 | 0.9808   |
| 0.0471        | 2.4183 | 1480 | 0.0804          | 0.9323    | 0.9473 | 0.9397 | 0.9791   |
| 0.0727        | 2.4510 | 1500 | 0.0987          | 0.8974    | 0.9471 | 0.9216 | 0.9737   |
| 0.0577        | 2.4837 | 1520 | 0.0779          | 0.9396    | 0.9567 | 0.9480 | 0.9809   |
| 0.0459        | 2.5163 | 1540 | 0.0809          | 0.9398    | 0.9549 | 0.9473 | 0.9810   |
| 0.0498        | 2.5490 | 1560 | 0.0851          | 0.9311    | 0.9540 | 0.9424 | 0.9795   |
| 0.0629        | 2.5817 | 1580 | 0.0788          | 0.9351    | 0.9533 | 0.9441 | 0.9802   |
| 0.071         | 2.6144 | 1600 | 0.0827          | 0.9289    | 0.9582 | 0.9433 | 0.9786   |
| 0.058         | 2.6471 | 1620 | 0.0939          | 0.9219    | 0.9579 | 0.9395 | 0.9760   |
| 0.0532        | 2.6797 | 1640 | 0.0771          | 0.9331    | 0.9580 | 0.9454 | 0.9793   |
| 0.0456        | 2.7124 | 1660 | 0.0783          | 0.9414    | 0.9536 | 0.9474 | 0.9809   |
| 0.0577        | 2.7451 | 1680 | 0.1302          | 0.9182    | 0.9138 | 0.9160 | 0.9714   |
| 0.0559        | 2.7778 | 1700 | 0.0848          | 0.9273    | 0.9556 | 0.9412 | 0.9786   |
| 0.0561        | 2.8105 | 1720 | 0.0865          | 0.9290    | 0.9546 | 0.9416 | 0.9784   |
| 0.0688        | 2.8431 | 1740 | 0.0819          | 0.9247    | 0.9555 | 0.9398 | 0.9776   |
| 0.0429        | 2.8758 | 1760 | 0.0830          | 0.9279    | 0.9534 | 0.9405 | 0.9787   |
| 0.0445        | 2.9085 | 1780 | 0.0808          | 0.9372    | 0.9515 | 0.9443 | 0.9798   |
| 0.0599        | 2.9412 | 1800 | 0.0855          | 0.9225    | 0.9573 | 0.9396 | 0.9781   |
| 0.057         | 2.9739 | 1820 | 0.0794          | 0.9336    | 0.9582 | 0.9458 | 0.9804   |
| 0.0408        | 3.0065 | 1840 | 0.0794          | 0.9312    | 0.9597 | 0.9452 | 0.9808   |
| 0.0423        | 3.0392 | 1860 | 0.0827          | 0.9282    | 0.9509 | 0.9394 | 0.9792   |
| 0.0284        | 3.0719 | 1880 | 0.0798          | 0.9340    | 0.9570 | 0.9454 | 0.9807   |
| 0.0354        | 3.1046 | 1900 | 0.0795          | 0.9332    | 0.9575 | 0.9452 | 0.9800   |
| 0.0384        | 3.1373 | 1920 | 0.0800          | 0.9338    | 0.9593 | 0.9464 | 0.9799   |
| 0.0433        | 3.1699 | 1940 | 0.0801          | 0.9309    | 0.9593 | 0.9449 | 0.9796   |
| 0.0332        | 3.2026 | 1960 | 0.0780          | 0.9353    | 0.9502 | 0.9427 | 0.9796   |
| 0.0362        | 3.2353 | 1980 | 0.0852          | 0.9214    | 0.9568 | 0.9388 | 0.9778   |
| 0.0388        | 3.2680 | 2000 | 0.0774          | 0.9353    | 0.9562 | 0.9456 | 0.9804   |
| 0.0301        | 3.3007 | 2020 | 0.0799          | 0.9342    | 0.9560 | 0.9449 | 0.9804   |
| 0.0497        | 3.3333 | 2040 | 0.0801          | 0.9325    | 0.9481 | 0.9402 | 0.9796   |
| 0.0416        | 3.3660 | 2060 | 0.0739          | 0.9420    | 0.9557 | 0.9488 | 0.9813   |
| 0.044         | 3.3987 | 2080 | 0.0845          | 0.9193    | 0.9574 | 0.9380 | 0.9781   |
| 0.0364        | 3.4314 | 2100 | 0.0723          | 0.9395    | 0.9508 | 0.9451 | 0.9808   |
| 0.0482        | 3.4641 | 2120 | 0.0884          | 0.9175    | 0.9472 | 0.9321 | 0.9761   |
| 0.0344        | 3.4967 | 2140 | 0.0762          | 0.9418    | 0.9542 | 0.9479 | 0.9812   |
| 0.035         | 3.5294 | 2160 | 0.0907          | 0.9106    | 0.9458 | 0.9278 | 0.9753   |
| 0.0406        | 3.5621 | 2180 | 0.0775          | 0.9340    | 0.9495 | 0.9417 | 0.9794   |
| 0.0385        | 3.5948 | 2200 | 0.0817          | 0.9341    | 0.9564 | 0.9451 | 0.9798   |
| 0.0289        | 3.6275 | 2220 | 0.0774          | 0.9409    | 0.9598 | 0.9502 | 0.9817   |
| 0.027         | 3.6601 | 2240 | 0.0772          | 0.9374    | 0.9548 | 0.9460 | 0.9808   |
| 0.0438        | 3.6928 | 2260 | 0.0817          | 0.9312    | 0.9543 | 0.9426 | 0.9793   |
| 0.0396        | 3.7255 | 2280 | 0.0805          | 0.9366    | 0.9567 | 0.9465 | 0.9801   |
| 0.0462        | 3.7582 | 2300 | 0.0792          | 0.9345    | 0.9591 | 0.9466 | 0.9804   |
| 0.0312        | 3.7908 | 2320 | 0.0750          | 0.9391    | 0.9574 | 0.9481 | 0.9810   |
| 0.0454        | 3.8235 | 2340 | 0.0786          | 0.9311    | 0.9588 | 0.9447 | 0.9798   |
| 0.0421        | 3.8562 | 2360 | 0.0776          | 0.9368    | 0.9551 | 0.9459 | 0.9802   |
| 0.0399        | 3.8889 | 2380 | 0.0839          | 0.9287    | 0.9588 | 0.9435 | 0.9785   |
| 0.053         | 3.9216 | 2400 | 0.0820          | 0.9302    | 0.9564 | 0.9431 | 0.9787   |
| 0.0415        | 3.9542 | 2420 | 0.0763          | 0.9412    | 0.9519 | 0.9465 | 0.9809   |
| 0.0464        | 3.9869 | 2440 | 0.0755          | 0.9392    | 0.9530 | 0.9461 | 0.9811   |
| 0.0342        | 4.0196 | 2460 | 0.0771          | 0.9372    | 0.9586 | 0.9478 | 0.9807   |
| 0.0276        | 4.0523 | 2480 | 0.0767          | 0.9372    | 0.9587 | 0.9478 | 0.9804   |
| 0.0256        | 4.0850 | 2500 | 0.0786          | 0.9341    | 0.9574 | 0.9456 | 0.9800   |
| 0.0256        | 4.1176 | 2520 | 0.0810          | 0.9257    | 0.9497 | 0.9376 | 0.9786   |
| 0.0351        | 4.1503 | 2540 | 0.0735          | 0.9417    | 0.9562 | 0.9489 | 0.9819   |
| 0.0226        | 4.1830 | 2560 | 0.0757          | 0.9395    | 0.9577 | 0.9486 | 0.9813   |
| 0.0397        | 4.2157 | 2580 | 0.0792          | 0.9314    | 0.9526 | 0.9419 | 0.9799   |
| 0.0225        | 4.2484 | 2600 | 0.0758          | 0.9403    | 0.9558 | 0.9480 | 0.9812   |
| 0.0247        | 4.2810 | 2620 | 0.0766          | 0.9390    | 0.9546 | 0.9468 | 0.9811   |
| 0.0324        | 4.3137 | 2640 | 0.0754          | 0.9425    | 0.9531 | 0.9478 | 0.9814   |
| 0.0329        | 4.3464 | 2660 | 0.0763          | 0.9408    | 0.9534 | 0.9471 | 0.9808   |
| 0.0301        | 4.3791 | 2680 | 0.0765          | 0.9395    | 0.9548 | 0.9470 | 0.9807   |
| 0.0285        | 4.4118 | 2700 | 0.0763          | 0.9380    | 0.9561 | 0.9470 | 0.9811   |
| 0.019         | 4.4444 | 2720 | 0.0774          | 0.9376    | 0.9554 | 0.9464 | 0.9808   |
| 0.0187        | 4.4771 | 2740 | 0.0784          | 0.9369    | 0.9560 | 0.9463 | 0.9807   |
| 0.0261        | 4.5098 | 2760 | 0.0796          | 0.9361    | 0.9573 | 0.9466 | 0.9807   |
| 0.0352        | 4.5425 | 2780 | 0.0805          | 0.9340    | 0.9577 | 0.9458 | 0.9807   |
| 0.0269        | 4.5752 | 2800 | 0.0797          | 0.9343    | 0.9549 | 0.9445 | 0.9805   |
| 0.0317        | 4.6078 | 2820 | 0.0776          | 0.9398    | 0.9568 | 0.9482 | 0.9814   |
| 0.0297        | 4.6405 | 2840 | 0.0776          | 0.9365    | 0.9557 | 0.9460 | 0.9810   |
| 0.0221        | 4.6732 | 2860 | 0.0783          | 0.9342    | 0.9552 | 0.9446 | 0.9805   |
| 0.028         | 4.7059 | 2880 | 0.0785          | 0.9336    | 0.9560 | 0.9446 | 0.9805   |
| 0.0295        | 4.7386 | 2900 | 0.0786          | 0.9358    | 0.9570 | 0.9463 | 0.9807   |
| 0.0408        | 4.7712 | 2920 | 0.0787          | 0.9351    | 0.9579 | 0.9464 | 0.9807   |
| 0.0235        | 4.8039 | 2940 | 0.0781          | 0.9372    | 0.9585 | 0.9477 | 0.9811   |
| 0.027         | 4.8366 | 2960 | 0.0776          | 0.9388    | 0.9582 | 0.9484 | 0.9812   |
| 0.03          | 4.8693 | 2980 | 0.0775          | 0.9391    | 0.9581 | 0.9485 | 0.9813   |
| 0.0222        | 4.9020 | 3000 | 0.0773          | 0.9390    | 0.9577 | 0.9483 | 0.9812   |
| 0.0306        | 4.9346 | 3020 | 0.0772          | 0.9394    | 0.9580 | 0.9486 | 0.9814   |
| 0.0389        | 4.9673 | 3040 | 0.0772          | 0.9394    | 0.9575 | 0.9484 | 0.9814   |


### Framework versions

- PEFT 0.13.2
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0