--- library_name: transformers language: - en license: apache-2.0 base_model: EYEDOL/english-ASR tags: - whisper-event - generated_from_trainer datasets: - okezieowen/misc_naija_english_audio metrics: - wer model-index: - name: English_ASR2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: misc_naija_english type: okezieowen/misc_naija_english_audio metrics: - name: Wer type: wer value: 0.8855441714268444 --- # English_ASR2 This model is a fine-tuned version of [EYEDOL/english-ASR](https://huggingface.co/EYEDOL/english-ASR) on the misc_naija_english dataset. It achieves the following results on the evaluation set: - Loss: 0.0001 - Wer: 0.8855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.0001 | 8.9286 | 3000 | 0.0001 | 0.8855 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1