Dzy6's picture
init
c7995e9
import numpy as np
import networkx as nx
from networkx.utils import UnionFind
from typing import Optional
import torch
from torch import Tensor
from torch_sparse import SparseTensor
from scipy.sparse import csr_matrix
from math import pi as PI
import torch.nn.functional as F
def unique(sequence):
seen = set()
return [x for x in sequence if not (x in seen or seen.add(x))]
def pos2key(pos):
pos=pos.reshape(-1)
key="{:08.4f}".format(pos[0])+'_'+"{:08.4f}".format(pos[1])
return key
def get_angle(v1: Tensor, v2: Tensor):
if v1.shape[1]==2:
v1=F.pad(v1, (0, 1))
if v2.shape[1]==2:
v2= F.pad(v2, (0, 1))
return torch.atan2(
torch.cross(v1, v2, dim=1).norm(p=2, dim=1), (v1 * v2).sum(dim=1))
class GaussianSmearing(torch.nn.Module):
def __init__(self, start=-PI, stop=PI, num_gaussians=12):
super(GaussianSmearing, self).__init__()
offset = torch.linspace(start, stop, num_gaussians)
self.coeff = -0.5 / (offset[1] - offset[0]).item() ** 2
self.register_buffer("offset", offset)
def forward(self, dist):
dist = dist.view(-1, 1) - self.offset.view(1, -1)
return torch.exp(self.coeff * torch.pow(dist, 2))
def triplets(edge_index, num_nodes):
row, col = edge_index
value = torch.arange(row.size(0), device=row.device)
adj_t = SparseTensor(row=row, col=col, value=value,
sparse_sizes=(num_nodes, num_nodes))
adj_t_row = adj_t[col]
num_triplets = adj_t_row.set_value(None).sum(dim=1).to(torch.long)
idx_i = row.repeat_interleave(num_triplets)
idx_j = col.repeat_interleave(num_triplets)
edx_1st = value.repeat_interleave(num_triplets)
idx_k = adj_t_row.storage.col()
edx_2nd = adj_t_row.storage.value()
mask1 = (idx_i == idx_k) & (idx_j != idx_i)
mask2 = (idx_i == idx_j) & (idx_j != idx_k)
mask3 = (idx_j == idx_k) & (idx_i != idx_k)
mask = ~(mask1 | mask2 | mask3)
idx_i, idx_j, idx_k, edx_1st, edx_2nd = idx_i[mask], idx_j[mask], idx_k[mask], edx_1st[mask], edx_2nd[mask]
num_triplets_real = torch.cumsum(num_triplets, dim=0) - torch.cumsum(~mask, dim=0)[torch.cumsum(num_triplets, dim=0)-1]
return torch.stack([idx_i, idx_j, idx_k]), num_triplets_real.to(torch.long), edx_1st, edx_2nd
if __name__ == '__main__':
1