Commit
·
f6c95b2
1
Parent(s):
d251b08
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2-large-xls-r-300m-hsb-v1
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2-large-xls-r-300m-hsb-v1
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.5684
|
20 |
+
- Wer: 0.4402
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.00045
|
40 |
+
- train_batch_size: 16
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 2
|
44 |
+
- total_train_batch_size: 32
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 500
|
48 |
+
- num_epochs: 50
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
55 |
+
| 8.972 | 3.23 | 100 | 3.7498 | 1.0 |
|
56 |
+
| 3.3401 | 6.45 | 200 | 3.2320 | 1.0 |
|
57 |
+
| 3.2046 | 9.68 | 300 | 3.1741 | 0.9806 |
|
58 |
+
| 2.4031 | 12.9 | 400 | 1.0579 | 0.8996 |
|
59 |
+
| 1.0427 | 16.13 | 500 | 0.7989 | 0.7557 |
|
60 |
+
| 0.741 | 19.35 | 600 | 0.6405 | 0.6299 |
|
61 |
+
| 0.5699 | 22.58 | 700 | 0.6129 | 0.5928 |
|
62 |
+
| 0.4607 | 25.81 | 800 | 0.6548 | 0.5695 |
|
63 |
+
| 0.3827 | 29.03 | 900 | 0.6268 | 0.5190 |
|
64 |
+
| 0.3282 | 32.26 | 1000 | 0.5919 | 0.5016 |
|
65 |
+
| 0.2764 | 35.48 | 1100 | 0.5953 | 0.4805 |
|
66 |
+
| 0.2335 | 38.71 | 1200 | 0.5717 | 0.4728 |
|
67 |
+
| 0.2106 | 41.94 | 1300 | 0.5674 | 0.4569 |
|
68 |
+
| 0.1859 | 45.16 | 1400 | 0.5685 | 0.4502 |
|
69 |
+
| 0.1592 | 48.39 | 1500 | 0.5684 | 0.4402 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.16.1
|
75 |
+
- Pytorch 1.10.0+cu111
|
76 |
+
- Datasets 1.18.2
|
77 |
+
- Tokenizers 0.11.0
|