Create import
Browse files
import
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import necessary libraries
|
2 |
+
from transformers import AutoTokenizer, AutoModelForTextToWaveform
|
3 |
+
import torch
|
4 |
+
import scipy.io.wavfile as wavfile
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
# Load model and tokenizer
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/musicgen-small")
|
9 |
+
model = AutoModelForTextToWaveform.from_pretrained("facebook/musicgen-small")
|
10 |
+
|
11 |
+
def generate_music(prompt, duration_s=10):
|
12 |
+
# Tokenize the input prompt
|
13 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
14 |
+
|
15 |
+
# Generate audio
|
16 |
+
audio_values = model.generate(**inputs, max_new_tokens=int(duration_s * model.config.sample_rate / model.config.hop_length))
|
17 |
+
|
18 |
+
# Convert to numpy array and scale
|
19 |
+
audio_np = audio_values[0].cpu().numpy()
|
20 |
+
audio_np = (audio_np * 32767).astype(np.int16)
|
21 |
+
|
22 |
+
return audio_np
|
23 |
+
|
24 |
+
# Example usage
|
25 |
+
prompt = "A catchy electronic beat with a groovy bassline"
|
26 |
+
generated_audio = generate_music(prompt)
|
27 |
+
|
28 |
+
# Save the generated audio
|
29 |
+
wavfile.write("generated_music.wav", model.config.sample_rate, generated_audio)
|
30 |
+
|
31 |
+
print(f"Music generated and saved as 'generated_music.wav'")
|