| import torch | |
| import torchaudio | |
| from einops import rearrange | |
| from stable_audio_tools import get_pretrained_model | |
| from stable_audio_tools.inference.generation import generate_diffusion_cond | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # Download model | |
| model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0") | |
| sample_rate = model_config["sample_rate"] | |
| sample_size = model_config["sample_size"] | |
| model = model.to(device) | |
| # Set up text and timing conditioning | |
| conditioning = [{ | |
| "prompt": "128 BPM tech house drum loop", | |
| }] | |
| # Generate stereo audio | |
| output = generate_diffusion_cond( | |
| model, | |
| conditioning=conditioning, | |
| sample_size=sample_size, | |
| device=device | |
| ) | |
| # Rearrange audio batch to a single sequence | |
| output = rearrange(output, "b d n -> d (b n)") | |
| # Peak normalize, clip, convert to int16, and save to file | |
| output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu() | |
| torchaudio.save("output.wav", output, sample_rate) |