File size: 3,605 Bytes
6ff6375
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
493badd
 
 
 
 
 
 
 
6ff6375
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79f1a08
 
6ff6375
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
license: other
base_model: "black-forest-labs/FLUX.1-dev"
tags:
  - flux
  - flux-diffusers
  - text-to-image
  - diffusers
  - simpletuner
  - lora
  - template:sd-lora
inference: true
widget:
- text: 'unconditional (blank prompt)'
  parameters:
    negative_prompt: ''''
  output:
    url: ./assets/image_0_0.png
- text: 'anime style digital art of a girl with long black hair and purple eyes wearing an unbuttoned white shirt that shows off her medium breasts, cleavage, and purple bra. She is also wearing black pleated skirt and is has a hand on her breasts while she looks up at the camera with a seductive pose.'
  parameters:
    negative_prompt: ''''
  output:
    url: ./assets/image_1_0.png
---

# anime-lora-test-05

This is a standard PEFT LoRA derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev).


The main validation prompt used during training was:



```
anime style digital art of a girl with long black hair and purple eyes wearing an unbuttoned white shirt that shows off her medium breasts, cleavage, and purple bra. She is also wearing black pleated skirt and is has a hand on her breasts while she looks up at the camera with a seductive pose.
```
# Example Images
Base flux - no lora - are on top, with the lora are on the bottom ( same promt and seed )
The last 2 grids have the same prompt, except the last one is 1.5x strength.

![Grid1](./assets/grid-01.png)
![Grid2](./assets/grid-02.png)
![Grid3](./assets/grid-03.png)
![Grid4](./assets/grid-04.png)

## Validation settings
- CFG: `3.5`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `None`
- Seed: `89`
- Resolution: `1024x1024`

Note: The validation settings are not necessarily the same as the [training settings](#training-settings).

You can find some example images in the following gallery:


<Gallery />

The text encoder **was not** trained.
You may reuse the base model text encoder for inference.


## Training settings

- Training epochs: 93
- Training steps: 3000
- Learning rate: 0.0001
- Effective batch size: 1
  - Micro-batch size: 1
  - Gradient accumulation steps: 1
  - Number of GPUs: 1
- Prediction type: flow-matching
- Rescaled betas zero SNR: False
- Optimizer: adamw_bf16
- Precision: bf16
- Quantised: Yes: int8-quanto
- Xformers: Not used
- LoRA Rank: 32
- LoRA Alpha: None
- LoRA Dropout: 0.1
- LoRA initialisation style: default
    

## Datasets

### anime-test-01
- Repeats: 0
- Total number of images: 32
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square


## Inference


```python
import torch
from diffusers import DiffusionPipeline

model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'Disra/anime-lora-test-05'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.load_lora_weights(adapter_id)

prompt = "anime style digital art of a girl with long black hair and purple eyes wearing an unbuttoned white shirt that shows off her medium breasts, cleavage, and purple bra. She is also wearing black pleated skirt and is has a hand on her breasts while she looks up at the camera with a seductive pose."

pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1024,
    height=1024,
    guidance_scale=3.5,
).images[0]
image.save("output.png", format="PNG")
```