--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - DingYao/autotrain-data-fbert-singlish-5 co2_eq_emissions: emissions: 2.1095744631067883 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1943965533 - CO2 Emissions (in grams): 2.1096 ## Validation Metrics - Loss: 0.310 - Accuracy: 0.880 - Macro F1: 0.766 - Micro F1: 0.880 - Weighted F1: 0.877 - Macro Precision: 0.826 - Micro Precision: 0.880 - Weighted Precision: 0.877 - Macro Recall: 0.735 - Micro Recall: 0.880 - Weighted Recall: 0.880 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/DingYao/autotrain-fbert-singlish-5-1943965533 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("DingYao/autotrain-fbert-singlish-5-1943965533", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("DingYao/autotrain-fbert-singlish-5-1943965533", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```