# -*- coding: utf-8 -*- """OpenAI Whisper from Hugging Face Transformers with Microsoft PHI 3 Integration""" import gradio as gr from transformers import pipeline import torch from huggingface_hub import InferenceClient import os # Initialize the InferenceClient for PHI 3 client = InferenceClient( "microsoft/Phi-3.5-mini-instruct", # Update this to the correct model name for PHI 3 token=os.getenv("HF_API_TOKEN", "") # You can configure this API token through the Hugging Face Secrets ) # Check if a GPU is available and use it if possible device = 'cuda' if torch.cuda.is_available() else 'cpu' # Initialize the Whisper pipeline whisper = pipeline('automatic-speech-recognition', model='openai/whisper-tiny', device=0 if device == 'cuda' else -1) # Instructions (can be set through Hugging Face Secrets or hardcoded) instructions = os.getenv("INST", "Your default instructions here.") def query_phi(prompt): response = "" # Initialize an empty string to store the response for message in client.chat_completion( messages=[{"role": "user", "content": f"{instructions}\n{prompt}"}], max_tokens=500, stream=True, ): response += message.choices[0].delta.content # Append each message to the response return response # Return the accumulated response after the loop def transcribe_and_query(audio): # Transcribe the audio file transcription = whisper(audio)["text"] transcription = "Prompt : " + transcription # Query Microsoft PHI 3 with the transcribed text phi_response = query_phi(transcription) return transcription, phi_response # Create Gradio interface iface = gr.Interface( fn=transcribe_and_query, inputs=gr.Audio(type="filepath"), outputs=["text", "text"], title="Scam Call detector with BEEP", description="Upload your recorded call to see if it is a scam or not. /n Stay Safe, Stay Secure." ) # Launch the interface iface.launch(share=True) # share=True is optional, it provides a public link