Commit
·
8c9b1a5
1
Parent(s):
54c100e
move model to techiaith
Browse files- README.md +1 -110
- config.json +0 -76
- preprocessor_config.json +0 -8
- pytorch_model.bin +0 -3
- special_tokens_map.json +0 -1
- tokenizer_config.json +0 -1
- vocab.json +0 -1
README.md
CHANGED
|
@@ -20,118 +20,9 @@ model-index:
|
|
| 20 |
name: Common Voice cy
|
| 21 |
type: common_voice
|
| 22 |
args: cy
|
| 23 |
-
metrics:
|
| 24 |
-
- name: Test WER
|
| 25 |
-
type: wer
|
| 26 |
-
value: 25.31
|
| 27 |
---
|
| 28 |
|
| 29 |
# Wav2Vec2-Large-XLSR-Welsh
|
| 30 |
|
| 31 |
-
|
| 32 |
|
| 33 |
-
When using this model, make sure that your speech input is sampled at 16kHz.
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
## Usage
|
| 37 |
-
|
| 38 |
-
The model can be used directly (without a language model) as follows:
|
| 39 |
-
|
| 40 |
-
```python
|
| 41 |
-
import torch
|
| 42 |
-
import torchaudio
|
| 43 |
-
from datasets import load_dataset
|
| 44 |
-
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 45 |
-
|
| 46 |
-
test_dataset = load_dataset("common_voice", "cy", split="test[:2%]")
|
| 47 |
-
|
| 48 |
-
processor = Wav2Vec2Processor.from_pretrained("DewiBrynJones/wav2vec2-large-xlsr-welsh")
|
| 49 |
-
model = Wav2Vec2ForCTC.from_pretrained("DewiBrynJones/wav2vec2-large-xlsr-welsh")
|
| 50 |
-
|
| 51 |
-
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
| 52 |
-
|
| 53 |
-
# Preprocessing the datasets.
|
| 54 |
-
# We need to read the aduio files as arrays
|
| 55 |
-
def speech_file_to_array_fn(batch):
|
| 56 |
-
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
| 57 |
-
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
| 58 |
-
return batch
|
| 59 |
-
|
| 60 |
-
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
| 61 |
-
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 62 |
-
|
| 63 |
-
with torch.no_grad():
|
| 64 |
-
tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
| 65 |
-
|
| 66 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
| 67 |
-
|
| 68 |
-
print("Prediction:", processor.batch_decode(predicted_ids))
|
| 69 |
-
print("Reference:", test_dataset["sentence"][:2])
|
| 70 |
-
```
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
## Evaluation
|
| 74 |
-
|
| 75 |
-
The model can be evaluated as follows on the Welsh test data of Common Voice.
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
```python
|
| 79 |
-
import torch
|
| 80 |
-
import torchaudio
|
| 81 |
-
from datasets import load_dataset, load_metric
|
| 82 |
-
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 83 |
-
import re
|
| 84 |
-
|
| 85 |
-
test_dataset = load_dataset("common_voice", "cy", split="test")
|
| 86 |
-
|
| 87 |
-
wer = load_metric("wer")
|
| 88 |
-
|
| 89 |
-
processor = Wav2Vec2Processor.from_pretrained("DewiBrynJones/wav2vec2-large-xlsr-welsh")
|
| 90 |
-
model = Wav2Vec2ForCTC.from_pretrained("DewiBrynJones/wav2vec2-large-xlsr-welsh")
|
| 91 |
-
|
| 92 |
-
model.to("cuda")
|
| 93 |
-
|
| 94 |
-
chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\u2013\\\\u2014\\\\;\\\\:\\\\"\\\\\\\\%\\\\\\\\\\\\]'
|
| 95 |
-
|
| 96 |
-
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
| 97 |
-
|
| 98 |
-
# Preprocessing the datasets.
|
| 99 |
-
# We need to read the aduio files as arrays
|
| 100 |
-
def speech_file_to_array_fn(batch):
|
| 101 |
-
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
| 102 |
-
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
| 103 |
-
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
| 104 |
-
return batch
|
| 105 |
-
|
| 106 |
-
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
| 107 |
-
|
| 108 |
-
# Preprocessing the datasets.
|
| 109 |
-
# We need to read the aduio files as arrays
|
| 110 |
-
def evaluate(batch):
|
| 111 |
-
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 112 |
-
|
| 113 |
-
with torch.no_grad():
|
| 114 |
-
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
| 115 |
-
|
| 116 |
-
pred_ids = torch.argmax(logits, dim=-1)
|
| 117 |
-
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
| 118 |
-
return batch
|
| 119 |
-
|
| 120 |
-
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
| 121 |
-
|
| 122 |
-
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
| 123 |
-
```
|
| 124 |
-
|
| 125 |
-
**Test Result**: 25.31%
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
# Training
|
| 129 |
-
|
| 130 |
-
A Docker based setup for training and evaluating this model can be found at GitHub: https://github.com/techiaith/xlsr-fine-tuning-week
|
| 131 |
-
|
| 132 |
-
# Example Predictions
|
| 133 |
-
|
| 134 |
-
| Prediction | Reference |
|
| 135 |
-
|---|---|
|
| 136 |
-
| rhedais i ffwrdd heb ddweud dim wrthi ym beth digwyddodd | Rhedais i ffwrdd heb ddweud dim wrthi am beth ddigwyddodd. |
|
| 137 |
-
| ac yr oedd y ferch yn ofnus d | Ac yr oedd y ferch yn ofnus. |
|
|
|
|
| 20 |
name: Common Voice cy
|
| 21 |
type: common_voice
|
| 22 |
args: cy
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
---
|
| 24 |
|
| 25 |
# Wav2Vec2-Large-XLSR-Welsh
|
| 26 |
|
| 27 |
+
This model has moved to https://huggingface.co/techiaith/wav2vec2-xlsr-ft-cy
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
DELETED
|
@@ -1,76 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"_name_or_path": "facebook/wav2vec2-large-xlsr-53",
|
| 3 |
-
"activation_dropout": 0.055,
|
| 4 |
-
"apply_spec_augment": true,
|
| 5 |
-
"architectures": [
|
| 6 |
-
"Wav2Vec2ForCTC"
|
| 7 |
-
],
|
| 8 |
-
"attention_dropout": 0.094,
|
| 9 |
-
"bos_token_id": 1,
|
| 10 |
-
"conv_bias": true,
|
| 11 |
-
"conv_dim": [
|
| 12 |
-
512,
|
| 13 |
-
512,
|
| 14 |
-
512,
|
| 15 |
-
512,
|
| 16 |
-
512,
|
| 17 |
-
512,
|
| 18 |
-
512
|
| 19 |
-
],
|
| 20 |
-
"conv_kernel": [
|
| 21 |
-
10,
|
| 22 |
-
3,
|
| 23 |
-
3,
|
| 24 |
-
3,
|
| 25 |
-
3,
|
| 26 |
-
2,
|
| 27 |
-
2
|
| 28 |
-
],
|
| 29 |
-
"conv_stride": [
|
| 30 |
-
5,
|
| 31 |
-
2,
|
| 32 |
-
2,
|
| 33 |
-
2,
|
| 34 |
-
2,
|
| 35 |
-
2,
|
| 36 |
-
2
|
| 37 |
-
],
|
| 38 |
-
"ctc_loss_reduction": "mean",
|
| 39 |
-
"ctc_zero_infinity": false,
|
| 40 |
-
"do_stable_layer_norm": true,
|
| 41 |
-
"eos_token_id": 2,
|
| 42 |
-
"feat_extract_activation": "gelu",
|
| 43 |
-
"feat_extract_dropout": 0.0,
|
| 44 |
-
"feat_extract_norm": "layer",
|
| 45 |
-
"feat_proj_dropout": 0.04,
|
| 46 |
-
"final_dropout": 0.0,
|
| 47 |
-
"gradient_checkpointing": true,
|
| 48 |
-
"hidden_act": "gelu",
|
| 49 |
-
"hidden_dropout": 0.047,
|
| 50 |
-
"hidden_size": 1024,
|
| 51 |
-
"initializer_range": 0.02,
|
| 52 |
-
"intermediate_size": 4096,
|
| 53 |
-
"layer_norm_eps": 1e-05,
|
| 54 |
-
"layerdrop": 0.041,
|
| 55 |
-
"mask_channel_length": 10,
|
| 56 |
-
"mask_channel_min_space": 1,
|
| 57 |
-
"mask_channel_other": 0.0,
|
| 58 |
-
"mask_channel_prob": 0.0,
|
| 59 |
-
"mask_channel_selection": "static",
|
| 60 |
-
"mask_feature_length": 10,
|
| 61 |
-
"mask_feature_prob": 0.0,
|
| 62 |
-
"mask_time_length": 10,
|
| 63 |
-
"mask_time_min_space": 1,
|
| 64 |
-
"mask_time_other": 0.0,
|
| 65 |
-
"mask_time_prob": 0.082,
|
| 66 |
-
"mask_time_selection": "static",
|
| 67 |
-
"model_type": "wav2vec2",
|
| 68 |
-
"num_attention_heads": 16,
|
| 69 |
-
"num_conv_pos_embedding_groups": 16,
|
| 70 |
-
"num_conv_pos_embeddings": 128,
|
| 71 |
-
"num_feat_extract_layers": 7,
|
| 72 |
-
"num_hidden_layers": 24,
|
| 73 |
-
"pad_token_id": 48,
|
| 74 |
-
"transformers_version": "4.4.2",
|
| 75 |
-
"vocab_size": 49
|
| 76 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocessor_config.json
DELETED
|
@@ -1,8 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"do_normalize": true,
|
| 3 |
-
"feature_size": 1,
|
| 4 |
-
"padding_side": "right",
|
| 5 |
-
"padding_value": 0.0,
|
| 6 |
-
"return_attention_mask": true,
|
| 7 |
-
"sampling_rate": 16000
|
| 8 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pytorch_model.bin
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:0b3d1d4c5339a82fac76d5a361323ba7c8e8faa278c8f37e1e4db9929ecd4705
|
| 3 |
-
size 1262129841
|
|
|
|
|
|
|
|
|
|
|
|
special_tokens_map.json
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]"}
|
|
|
|
|
|
tokenizer_config.json
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
{"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|"}
|
|
|
|
|
|
vocab.json
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
{"g": 1, "‘": 2, "e": 3, "r": 4, "b": 5, "ê": 6, "â": 7, "ŷ": 8, "'": 9, "v": 10, "ö": 11, "ï": 12, "h": 13, "z": 14, "m": 15, "á": 16, "ä": 17, "ñ": 18, "o": 19, "n": 20, "j": 21, "ò": 22, "ë": 23, "î": 24, "k": 25, "q": 26, "x": 27, "¬": 28, "a": 29, "s": 30, "i": 31, "ÿ": 32, "u": 33, "ŵ": 34, "c": 35, "é": 36, "w": 37, "p": 38, "y": 39, "d": 40, "l": 41, "à": 42, "û": 43, "t": 44, "f": 45, "ô": 46, "|": 0, "[UNK]": 47, "[PAD]": 48}
|
|
|
|
|
|