File size: 11,100 Bytes
9181134 1d0d3ad 798ed09 9181134 91fc692 9181134 1d0d3ad 9181134 1d0d3ad 9181134 1d0d3ad 9181134 1d0d3ad 9181134 1d0d3ad 9181134 1d0d3ad 9181134 1d0d3ad 9181134 1d0d3ad 9181134 1d0d3ad 3c6230d 1d0d3ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
---
tags:
- chat
- roleplay
- storywriting
- mistral
- finetune
datasets:
- NewEden/Orion-Asstr-Stories-16K
- Gryphe/Sonnet3.5-SlimOrcaDedupCleaned-20k
Language:
- En
Pipeline_tag: text-generation
Base_model: mistralai/Mistral-7B-v0.3
Tags:
- Chat
base_model:
- Delta-Vector/Hamanasu-7B-Base
pipeline_tag: text-generation
library_name: transformers
---
<img src="https://cdn-uploads.huggingface.co/production/uploads/66c26b6fb01b19d8c3c2467b/LWMr-e3nh9vounB-1yV6F.png" alt="alt text" width="500"/>
A finetune of Mistral-7B-V0.3 to test out the Orion-Asstr dataset, This model was completion trained with Orion Asstr using Unsloth and then instruct-tuned with Gryphe's 20K Sonnetorca subset. The model leans towards RP format *actions* "Dialogue" and shorter responses.
# Quants
GGUF : https://huggingface.co/Delta-Vector/Hamanasu-7B-instruct-gguf
EXL2 : https://huggingface.co/Delta-Vector/Hamanasu-7B-instruct-exl2
## Prompting
Model has been tuned with the Mistral formatting. A typical input would look like this:
```py
"""<s> [INST] Hello, how are you? [/INST] I'm doing great. How can I help you today?</s> [INST] I'd like to show off how chat templating works! [/INST]"""
```
## System Prompting
I would highly recommend using either Euryale's system prompt or the EVA system prompt with the model.
<details><summary>See Sao10k's Euryale System Prompt</summary>
```
Currently, your role is {{char}}, described in detail below. As {{char}}, continue the narrative exchange with {{user}}.
<Guidelines>
• Maintain the character persona but allow it to evolve with the story.
• Be creative and proactive. Drive the story forward, introducing plotlines and events when relevant.
• All types of outputs are encouraged; respond accordingly to the narrative.
• Include dialogues, actions, and thoughts in each response.
• Utilize all five senses to describe scenarios within {{char}}'s dialogue.
• Use emotional symbols such as "!" and "~" in appropriate contexts.
• Incorporate onomatopoeia when suitable.
• Allow time for {{user}} to respond with their own input, respecting their agency.
• Act as secondary characters and NPCs as needed, and remove them when appropriate.
• When prompted for an Out of Character [OOC:] reply, answer neutrally and in plaintext, not as {{char}}.
</Guidelines>
<Forbidden>
• Using excessive literary embellishments and purple prose unless dictated by {{char}}'s persona.
• Writing for, speaking, thinking, acting, or replying as {{user}} in your response.
• Repetitive and monotonous outputs.
• Positivity bias in your replies.
• Being overly extreme or NSFW when the narrative context is inappropriate.
</Forbidden>
Follow the instructions in <Guidelines></Guidelines>, avoiding the items listed in <Forbidden></Forbidden>.
```
</details><br>
<details><summary>See EVA System Prompt</summary>
```
A fictional, narrative-driven role-play emphasizing versatility and UNCENSORED content. Adherence to the `Role-playing Guidelines` is mandatory. Refer to the `Role-play Context` for accurate information.\n\n\n
<!-- Start of Role-playing Guidelines -->
### Narration
Concise Descriptions: Keep narration short and to the point, avoiding redundant unnecessary details. Use a dynamic and varied vocabulary for impact.
Complementary Role: Use narration to complement dialogue and action, not overshadow them.
Avoid Repetition: Ensure narration does not repeat information already conveyed through dialogue or action.
### Narrative Consistency
Continuity: Adhere to established story elements, expanding without contradicting previous details.\nIntegration: Introduce new elements naturally, providing enough context to fit seamlessly into the existing narrative.
### Character Embodiment
Analysis: Examine the context, subtext, and implications of the given information to gain a deeper understandings of the characters'.
Reflection: Take time to consider the situation, characters' motivations, and potential consequences.
Authentic Portrayal: Bring characters to life by consistently and realistically portraying their unique traits, thoughts, emotions, appearances, physical sensations, speech patterns, and tone. Ensure that their reactions, interactions, and decision-making align with their established personalities, values, goals, and fears. Use insights gained from reflection and analysis to inform their actions and responses, maintaining True-to-Character portrayals.
<!-- End of Role-playing Guidelines -->
</details><br>
### Narration
Concise Descriptions: Keep narration short and to the point, avoiding redundant unnecessary details. Use a dynamic and varied vocabulary for impact.
Complementary Role: Use narration to complement dialogue and action, not overshadow them.
Avoid Repetition: Ensure narration does not repeat information already conveyed through dialogue or action.
### Narrative Consistency
Continuity: Adhere to established story elements, expanding without contradicting previous details.\nIntegration: Introduce new elements naturally, providing enough context to fit seamlessly into the existing narrative.
### Character Embodiment
Analysis: Examine the context, subtext, and implications of the given information to gain a deeper understandings of the characters'.
Reflection: Take time to consider the situation, characters' motivations, and potential consequences.
Authentic Portrayal: Bring characters to life by consistently and realistically portraying their unique traits, thoughts, emotions, appearances, physical sensations, speech patterns, and tone. Ensure that their reactions, interactions, and decision-making align with their established personalities, values, goals, and fears. Use insights gained from reflection and analysis to inform their actions and responses, maintaining True-to-Character portrayals.
<!-- End of Role-playing Guidelines -->",
```
</details><br>
## Unsloth config
<details><summary>See Unsloth SFT Trainer config</summary>
```py
from unsloth import FastLanguageModel
import torch
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
# 4bit pre quantized models we support for 4x faster downloading + no OOMs.
fourbit_models = [
"unsloth/mistral-7b-bnb-4bit",
"unsloth/mistral-7b-instruct-v0.2-bnb-4bit",
"unsloth/llama-2-7b-bnb-4bit",
"unsloth/llama-2-13b-bnb-4bit",
"unsloth/codellama-34b-bnb-4bit",
"unsloth/tinyllama-bnb-4bit",
] # More models at https://huggingface.co/unsloth
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "Delta-Vector/Hamanasu-7B-Base, # Choose ANY! eg teknium/OpenHermes-2.5-Mistral-7B
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
)
"""We now add LoRA adapters so we only need to update 1 to 10% of all parameters!"""
model = FastLanguageModel.get_peft_model(
model,
r = 64, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",],
lora_alpha = 32,
lora_dropout = 0, # Supports any, but = 0 is optimized
bias = "none", # Supports any, but = "none" is optimized
use_gradient_checkpointing = True,
random_state = 3407,
use_rslora = True, # We support rank stabilized LoRA
loftq_config = None, # And LoftQ
)
from unsloth.chat_templates import get_chat_template
tokenizer = get_chat_template(
tokenizer,
chat_template = "mistral", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth
mapping = {"role" : "from", "content" : "value", "user" : "human", "assistant" : "gpt"}, # ShareGPT style
map_eos_token = True, # Maps <|im_end|> to </s> instead
)
def formatting_prompts_func(examples):
convos = examples["conversations"]
texts = [tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = False) for convo in convos]
return { "text" : texts, }
pass
from datasets import load_dataset
dataset = load_dataset("anthracite-org/kalo-opus-instruct-22k-no-refusal", split = "train")
dataset = dataset.map(formatting_prompts_func, batched = True,)
from trl import SFTTrainer
from transformers import TrainingArguments
trainer = SFTTrainer(
model = model,
tokenizer = tokenizer,
train_dataset = dataset,
dataset_text_field = "text",
max_seq_length = max_seq_length,
dataset_num_proc = 2,
packing = False, # Can make training 5x faster for short sequences.
args = TrainingArguments(
per_device_train_batch_size = 2,
gradient_accumulation_steps = 8,
warmup_steps = 25,
num_train_epochs=2,
learning_rate = 2e-5,
fp16 = not torch.cuda.is_bf16_supported(),
bf16 = torch.cuda.is_bf16_supported(),
logging_steps = 1,
optim = "paged_adamw_8bit",
weight_decay = 0.01,
lr_scheduler_type = "linear",
seed = 3407,
output_dir = "outputs",
report_to = "wandb", # Use this for WandB etc
),
)
#@title Show current memory stats
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")
trainer_stats = trainer.train()
#@title Show final memory and time stats
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
used_memory_for_lora = round(used_memory - start_gpu_memory, 3)
used_percentage = round(used_memory /max_memory*100, 3)
lora_percentage = round(used_memory_for_lora/max_memory*100, 3)
print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.")
print(f"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.")
print(f"Peak reserved memory = {used_memory} GB.")
print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")
print(f"Peak reserved memory % of max memory = {used_percentage} %.")
print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.")
```
</details><br>
## Credits
Thank you to [Lucy Knada](https://huggingface.co/lucyknada), [jeiku](https://huggingface.co/jeiku), [Intervitens](https://huggingface.co/intervitens), [Kalomaze](https://huggingface.co/kalomaze), [Kubernetes Bad](https://huggingface.co/kubernetes-bad) and the rest of [Anthracite](https://huggingface.co/anthracite-org)
## Training
The training was done for 2 epochs. We used 1 x RTX A4000
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/made%20with%20unsloth.png" alt="Made with Unsloth" width="200" height="32"/>](https://github.com/unslothai/unsloth)
## Safety
Nein. |