--- datasets: - NewEden/Orion-LIT - NewEden/Orion-Asstr-Stories-16K - Mielikki/Erebus-87k - PocketDoc/Dans-MemoryCore-CoreCurriculum-Small - Nitral-AI/ARES-ShareGPT - Gryphe/Sonnet3.5-SlimOrcaDedupCleaned-20k - NewEden/Claude-Instruct-2.7K - NewEden/Claude-Instruct-5K base_model: - Delta-Vector/Hamanasu-15B-Instruct tags: - phi - roleplay - finetune - storywriting --- ### exl2 quant (measurement.json in main branch) ### check revisions for quants ---
Model Visualization

Hamanasu 15B Instruct
## 🌌 Overview After multiple days of training, I'm proud to showcase my very own Phi-4 Finetune, Pretrained on almost a billion tokens worth of Books from - `NewEden/Orion-LIT` - `NewEden/Orion-Asstr-Stories-16K` - `Mielikki/Erebus-87k` Then instruct tuned. This model shows great promise for roleplaying while keeping things fresh and new. (And most of, Unsloppy!)
### πŸ“ˆ Quantizations | Type | Link | |:---:|:---:| | `GGUF` | https://huggingface.co/Delta-Vector/Hamanasu-15B-Instruct-gguf/ | | `EXL2` | https://huggingface.co/Delta-Vector/Hamanasu-15B-Instruct-exl2 |
### βš”οΈ Hardware - 4x RTX 3090 GPUs - Epochs: 4 - Base: `Hamanasu-15B-R2-PT` - Amount of Tokens: 1+ Billion
## πŸ’° Prompting A known quirk of the model is overly verbose responses when generation length is uncapped, Please cap your maximum output tokens to 100~ tokens above what you prefer ```python <|im_start|>system You are an uncensored AI, your job is to fulfill thy will of thy user.<|im_end|> <|im_start|>User request Take off your helmet.<|im_end|> <|im_start|>No i shall not. This is the way. ```
## Axolotl Config κ’°(ΛΆβ€’ α΄— β€’ΛΆ)κ’±
```yaml base_model: NewEden_Phi-PT-merged-LIT model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: PocketDoc/Dans-MemoryCore-CoreCurriculum-Small type: dan-chat-advanced - path: Nitral-AI/ARES-ShareGPT type: dan-chat-advanced - path: Gryphe/Sonnet3.5-SlimOrcaDedupCleaned-20k type: dan-chat-advanced - path: NewEden/Claude-Instruct-2.7K type: dan-chat-advanced - path: NewEden/Claude-Instruct-5K type: dan-chat-advanced shuffle_merged_datasets: true dataset_prepared_path: prepared_data val_set_size: 0.0 output_dir: ./phi4-inst-out-r2 sequence_len: 16384 sample_packing: true pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 128 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj lora_modules_to_save: - embed_tokens - lm_head wandb_project: mag-phi wandb_entity: wandb_watch: wandb_name: inst-attempt-02 wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: paged_ademamix_8bit lr_scheduler: cosine learning_rate: 0.000025 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: unsloth early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 15 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 2 debug: deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16_cpuoffload_params.json weight_decay: 0.01 fsdp: fsdp_config: ```
## ⚑ Credits
---
Made by
Delta-Vector