Commit
·
bc3c436
1
Parent(s):
85a8c27
Readme
Browse files
readme.md
CHANGED
@@ -1,217 +1,17 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
- Language ID mapping
|
19 |
-
- Memory pinning for CUDA optimization
|
20 |
-
- Automatic handling of missing values
|
21 |
-
|
22 |
-
3. **Training System**
|
23 |
-
- Mixed precision training (BF16/FP16)
|
24 |
-
- Gradient accumulation
|
25 |
-
- Language-aware loss weighting
|
26 |
-
- Distributed training support
|
27 |
-
- Automatic threshold optimization
|
28 |
-
|
29 |
-
### Key Features
|
30 |
-
|
31 |
-
- **Language Awareness**
|
32 |
-
- Language-specific embeddings
|
33 |
-
- Dynamic dropout rates per language
|
34 |
-
- Language-aware attention mechanism
|
35 |
-
- Automatic fallback to English for unsupported languages
|
36 |
-
|
37 |
-
- **Performance Optimization**
|
38 |
-
- Gradient checkpointing
|
39 |
-
- Memory-efficient attention
|
40 |
-
- Automatic mixed precision
|
41 |
-
- Caching system for processed data
|
42 |
-
- CUDA optimization with memory pinning
|
43 |
-
|
44 |
-
- **Training Features**
|
45 |
-
- Weighted focal loss with language awareness
|
46 |
-
- Dynamic threshold optimization
|
47 |
-
- Early stopping with patience
|
48 |
-
- Gradient flow monitoring
|
49 |
-
- Comprehensive metric tracking
|
50 |
-
|
51 |
-
## 📊 Data Processing
|
52 |
-
|
53 |
-
### Input Format
|
54 |
-
```python
|
55 |
-
{
|
56 |
-
'comment_text': str, # The text to classify
|
57 |
-
'lang': str, # Language code (en, ru, tr, es, fr, it, pt)
|
58 |
-
'toxic': int, # Binary labels for each category
|
59 |
-
'severe_toxic': int,
|
60 |
-
'obscene': int,
|
61 |
-
'threat': int,
|
62 |
-
'insult': int,
|
63 |
-
'identity_hate': int
|
64 |
-
}
|
65 |
-
```
|
66 |
-
|
67 |
-
### Language Support
|
68 |
-
- Primary: en, ru, tr, es, fr, it, pt
|
69 |
-
- Default fallback: en (English)
|
70 |
-
- Language ID mapping: {en: 0, ru: 1, tr: 2, es: 3, fr: 4, it: 5, pt: 6}
|
71 |
-
|
72 |
-
## 🚀 Model Architecture
|
73 |
-
|
74 |
-
### Base Model
|
75 |
-
- XLM-RoBERTa Large
|
76 |
-
- Hidden size: 1024
|
77 |
-
- Attention heads: 16
|
78 |
-
- Max sequence length: 128
|
79 |
-
|
80 |
-
### Custom Components
|
81 |
-
|
82 |
-
1. **Language-Aware Classifier**
|
83 |
-
```python
|
84 |
-
- Input: Hidden states [batch_size, hidden_size]
|
85 |
-
- Language embeddings: [batch_size, 64]
|
86 |
-
- Projection: hidden_size + 64 -> 512
|
87 |
-
- Output: 6 toxicity predictions
|
88 |
-
```
|
89 |
-
|
90 |
-
2. **Language-Aware Attention**
|
91 |
-
```python
|
92 |
-
- Input: Hidden states + Language embeddings
|
93 |
-
- Scaled dot product attention
|
94 |
-
- Gating mechanism for feature fusion
|
95 |
-
- Memory-efficient implementation
|
96 |
-
```
|
97 |
-
|
98 |
-
## 🛠️ Training Configuration
|
99 |
-
|
100 |
-
### Hyperparameters
|
101 |
-
```python
|
102 |
-
{
|
103 |
-
"batch_size": 32,
|
104 |
-
"grad_accum_steps": 2,
|
105 |
-
"epochs": 4,
|
106 |
-
"lr": 2e-5,
|
107 |
-
"weight_decay": 0.01,
|
108 |
-
"warmup_ratio": 0.1,
|
109 |
-
"label_smoothing": 0.01,
|
110 |
-
"model_dropout": 0.1,
|
111 |
-
"freeze_layers": 2
|
112 |
-
}
|
113 |
-
```
|
114 |
-
|
115 |
-
### Optimization
|
116 |
-
- Optimizer: AdamW
|
117 |
-
- Learning rate scheduler: Cosine with warmup
|
118 |
-
- Mixed precision: BF16/FP16
|
119 |
-
- Gradient clipping: 1.0
|
120 |
-
- Gradient accumulation steps: 2
|
121 |
-
|
122 |
-
## 📈 Metrics and Monitoring
|
123 |
-
|
124 |
-
### Training Metrics
|
125 |
-
- Loss (per language)
|
126 |
-
- AUC-ROC (macro)
|
127 |
-
- Precision, Recall, F1
|
128 |
-
- Language-specific metrics
|
129 |
-
- Gradient norms
|
130 |
-
- Memory usage
|
131 |
-
|
132 |
-
### Validation Metrics
|
133 |
-
- AUC-ROC (per class and language)
|
134 |
-
- Optimal thresholds per language
|
135 |
-
- Critical class performance (threat, identity_hate)
|
136 |
-
- Distribution shift monitoring
|
137 |
-
|
138 |
-
## 🔧 Usage
|
139 |
-
|
140 |
-
### Training
|
141 |
-
```bash
|
142 |
-
python model/train.py
|
143 |
-
```
|
144 |
-
|
145 |
-
### Inference
|
146 |
-
```python
|
147 |
-
from model.predict import predict_toxicity
|
148 |
-
|
149 |
-
results = predict_toxicity(
|
150 |
-
text="Your text here",
|
151 |
-
model=model,
|
152 |
-
tokenizer=tokenizer,
|
153 |
-
config=config
|
154 |
-
)
|
155 |
-
```
|
156 |
-
|
157 |
-
## 🔍 Code Structure
|
158 |
-
|
159 |
-
```
|
160 |
-
model/
|
161 |
-
├── language_aware_transformer.py # Core model architecture
|
162 |
-
├── train.py # Training loop and utilities
|
163 |
-
├── predict.py # Inference utilities
|
164 |
-
├── evaluation/
|
165 |
-
│ ├── evaluate.py # Evaluation functions
|
166 |
-
│ └── threshold_optimizer.py # Dynamic threshold optimization
|
167 |
-
├── data/
|
168 |
-
│ └── sampler.py # Custom sampling strategies
|
169 |
-
└── training_config.py # Configuration management
|
170 |
-
```
|
171 |
-
|
172 |
-
## 🤖 AI/ML Specific Notes
|
173 |
-
|
174 |
-
1. **Tensor Shapes**
|
175 |
-
- Input IDs: [batch_size, seq_len]
|
176 |
-
- Attention Mask: [batch_size, seq_len]
|
177 |
-
- Language IDs: [batch_size]
|
178 |
-
- Hidden States: [batch_size, seq_len, hidden_size]
|
179 |
-
- Language Embeddings: [batch_size, embed_dim]
|
180 |
-
|
181 |
-
2. **Critical Components**
|
182 |
-
- Language ID handling in forward pass
|
183 |
-
- Attention mask shape management
|
184 |
-
- Memory-efficient attention implementation
|
185 |
-
- Gradient flow in language-aware components
|
186 |
-
|
187 |
-
3. **Performance Considerations**
|
188 |
-
- Cache management for processed data
|
189 |
-
- Memory pinning for GPU transfers
|
190 |
-
- Gradient accumulation for large batches
|
191 |
-
- Language-specific dropout rates
|
192 |
-
|
193 |
-
4. **Error Handling**
|
194 |
-
- Language ID validation
|
195 |
-
- Shape compatibility checks
|
196 |
-
- Gradient norm monitoring
|
197 |
-
- Device placement verification
|
198 |
-
|
199 |
-
## 📝 Notes for AI Systems
|
200 |
-
|
201 |
-
1. When modifying the code:
|
202 |
-
- Maintain language ID handling in forward pass
|
203 |
-
- Preserve attention mask shape management
|
204 |
-
- Keep device consistency checks
|
205 |
-
- Handle BatchEncoding security in PyTorch 2.6+
|
206 |
-
|
207 |
-
2. Key attention points:
|
208 |
-
- Language ID tensor shape and type
|
209 |
-
- Attention mask broadcasting
|
210 |
-
- Memory-efficient attention implementation
|
211 |
-
- Gradient flow through language-aware components
|
212 |
-
|
213 |
-
3. Common pitfalls:
|
214 |
-
- Incorrect attention mask shapes
|
215 |
-
- Language ID type mismatches
|
216 |
-
- Memory leaks in caching
|
217 |
-
- Device inconsistencies
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- textdetox/multilingual_toxicity_dataset
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
- it
|
7 |
+
- ru
|
8 |
+
- ae
|
9 |
+
- es
|
10 |
+
- tr
|
11 |
+
metrics:
|
12 |
+
- accuracy
|
13 |
+
- f1
|
14 |
+
base_model:
|
15 |
+
- FacebookAI/xlm-roberta-large
|
16 |
+
pipeline_tag: text-classification
|
17 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|