|
import re |
|
import nltk |
|
import logging |
|
from typing import List, Set, Dict, Optional |
|
from nltk.tokenize import word_tokenize |
|
from nltk.corpus import stopwords |
|
from nltk.stem import SnowballStemmer |
|
from TurkishStemmer import TurkishStemmer |
|
from bs4 import BeautifulSoup, MarkupResemblesLocatorWarning |
|
import unicodedata |
|
import warnings |
|
|
|
|
|
warnings.filterwarnings("ignore", category=MarkupResemblesLocatorWarning) |
|
|
|
|
|
try: |
|
nltk.download('stopwords', quiet=True) |
|
nltk.download('punkt', quiet=True) |
|
nltk.download('punkt_tab', quiet=True) |
|
nltk.download('averaged_perceptron_tagger', quiet=True) |
|
except Exception as e: |
|
print(f"Warning: Could not download NLTK data: {str(e)}") |
|
|
|
|
|
logging.basicConfig(level=logging.WARNING) |
|
|
|
class TextPreprocessor: |
|
""" |
|
A comprehensive text preprocessor for multilingual text cleaning and normalization. |
|
Supports multiple languages and provides various text cleaning operations. |
|
""" |
|
|
|
SUPPORTED_LANGUAGES = {'en', 'es', 'fr', 'it', 'pt', 'ru', 'tr'} |
|
|
|
|
|
CONTRACTIONS = { |
|
"ain't": "is not", "aren't": "are not", "can't": "cannot", |
|
"couldn't": "could not", "didn't": "did not", "doesn't": "does not", |
|
"don't": "do not", "hadn't": "had not", "hasn't": "has not", |
|
"haven't": "have not", "he'd": "he would", "he'll": "he will", |
|
"he's": "he is", "i'd": "i would", "i'll": "i will", "i'm": "i am", |
|
"i've": "i have", "isn't": "is not", "it's": "it is", |
|
"let's": "let us", "shouldn't": "should not", "that's": "that is", |
|
"there's": "there is", "they'd": "they would", "they'll": "they will", |
|
"they're": "they are", "they've": "they have", "wasn't": "was not", |
|
"we'd": "we would", "we're": "we are", "we've": "we have", |
|
"weren't": "were not", "what's": "what is", "where's": "where is", |
|
"who's": "who is", "won't": "will not", "wouldn't": "would not", |
|
"you'd": "you would", "you'll": "you will", "you're": "you are", |
|
"you've": "you have" |
|
} |
|
|
|
def __init__(self, languages: Optional[Set[str]] = None): |
|
""" |
|
Initialize the text preprocessor with specified languages. |
|
|
|
Args: |
|
languages: Set of language codes to support. If None, all supported languages are used. |
|
""" |
|
self.languages = languages or self.SUPPORTED_LANGUAGES |
|
self._initialize_resources() |
|
|
|
def _initialize_resources(self): |
|
"""Initialize language-specific resources like stop words and stemmers.""" |
|
|
|
self.logger = logging.getLogger(__name__) |
|
|
|
|
|
self.stop_words = {} |
|
nltk_langs = { |
|
'en': 'english', 'es': 'spanish', 'fr': 'french', |
|
'it': 'italian', 'pt': 'portuguese', 'ru': 'russian' |
|
} |
|
|
|
for lang, nltk_name in nltk_langs.items(): |
|
if lang in self.languages: |
|
try: |
|
self.stop_words[lang] = set(stopwords.words(nltk_name)) |
|
except Exception as e: |
|
self.logger.warning(f"Could not load stop words for {lang}: {str(e)}") |
|
self.stop_words[lang] = set() |
|
|
|
|
|
if 'tr' in self.languages: |
|
self.stop_words['tr'] = { |
|
'acaba', 'ama', 'aslında', 'az', 'bazı', 'belki', 'biri', 'birkaç', |
|
'birşey', 'biz', 'bu', 'çok', 'çünkü', 'da', 'daha', 'de', 'defa', |
|
'diye', 'eğer', 'en', 'gibi', 'hem', 'hep', 'hepsi', 'her', 'hiç', |
|
'için', 'ile', 'ise', 'kez', 'ki', 'kim', 'mı', 'mu', 'mü', 'nasıl', |
|
'ne', 'neden', 'nerde', 'nerede', 'nereye', 'niçin', 'niye', 'o', |
|
'sanki', 'şey', 'siz', 'şu', 'tüm', 've', 'veya', 'ya', 'yani' |
|
} |
|
|
|
|
|
self.stemmers = {} |
|
for lang, name in [ |
|
('en', 'english'), ('es', 'spanish'), ('fr', 'french'), |
|
('it', 'italian'), ('pt', 'portuguese'), ('ru', 'russian') |
|
]: |
|
if lang in self.languages: |
|
self.stemmers[lang] = SnowballStemmer(name) |
|
|
|
|
|
if 'tr' in self.languages: |
|
self.stemmers['tr'] = TurkishStemmer() |
|
|
|
def remove_html(self, text: str) -> str: |
|
"""Remove HTML tags from text.""" |
|
return BeautifulSoup(text, "html.parser").get_text() |
|
|
|
def expand_contractions(self, text: str) -> str: |
|
"""Expand contractions in English text.""" |
|
for contraction, expansion in self.CONTRACTIONS.items(): |
|
text = re.sub(rf'\b{contraction}\b', expansion, text, flags=re.IGNORECASE) |
|
return text |
|
|
|
def remove_accents(self, text: str) -> str: |
|
"""Remove accents from text while preserving base characters.""" |
|
return ''.join(c for c in unicodedata.normalize('NFKD', text) |
|
if not unicodedata.combining(c)) |
|
|
|
def clean_text(self, text: str, lang: str = 'en', |
|
remove_stops: bool = True, |
|
remove_numbers: bool = True, |
|
remove_urls: bool = True, |
|
remove_emails: bool = True, |
|
remove_mentions: bool = True, |
|
remove_hashtags: bool = True, |
|
expand_contractions: bool = True, |
|
remove_accents: bool = False, |
|
min_word_length: int = 2) -> str: |
|
""" |
|
Clean and normalize text with configurable options. |
|
|
|
Args: |
|
text: Input text to clean |
|
lang: Language code of the text |
|
remove_stops: Whether to remove stop words |
|
remove_numbers: Whether to remove numbers |
|
remove_urls: Whether to remove URLs |
|
remove_emails: Whether to remove email addresses |
|
remove_mentions: Whether to remove social media mentions |
|
remove_hashtags: Whether to remove hashtags |
|
expand_contractions: Whether to expand contractions (English only) |
|
remove_accents: Whether to remove accents from characters |
|
min_word_length: Minimum length of words to keep |
|
|
|
Returns: |
|
Cleaned text string |
|
""" |
|
try: |
|
|
|
text = str(text).lower().strip() |
|
|
|
|
|
if '<' in text and '>' in text: |
|
text = self.remove_html(text) |
|
|
|
|
|
if remove_urls: |
|
text = re.sub(r'http\S+|www\S+', '', text) |
|
|
|
|
|
if remove_emails: |
|
text = re.sub(r'\S+@\S+', '', text) |
|
|
|
|
|
if remove_mentions: |
|
text = re.sub(r'@\w+', '', text) |
|
|
|
|
|
if remove_hashtags: |
|
text = re.sub(r'#\w+', '', text) |
|
|
|
|
|
if remove_numbers: |
|
text = re.sub(r'\d+', '', text) |
|
|
|
|
|
if lang == 'en' and expand_contractions: |
|
text = self.expand_contractions(text) |
|
|
|
|
|
if remove_accents: |
|
text = self.remove_accents(text) |
|
|
|
|
|
if lang == 'tr': |
|
text = re.sub(r'[^a-zA-ZçğıöşüÇĞİÖŞÜ\s]', '', text) |
|
elif lang == 'ru': |
|
text = re.sub(r'[^а-яА-Я\s]', '', text) |
|
else: |
|
text = re.sub(r'[^\w\s]', '', text) |
|
|
|
|
|
try: |
|
words = word_tokenize(text) |
|
except Exception as e: |
|
self.logger.debug(f"Word tokenization failed, falling back to simple split: {str(e)}") |
|
words = text.split() |
|
|
|
|
|
if remove_stops and lang in self.stop_words: |
|
words = [w for w in words if w not in self.stop_words[lang]] |
|
|
|
|
|
words = [w for w in words if len(w) > min_word_length] |
|
|
|
|
|
return ' '.join(words) |
|
|
|
except Exception as e: |
|
self.logger.warning(f"Error in text cleaning: {str(e)}") |
|
return text |
|
|
|
def stem_text(self, text: str, lang: str = 'en') -> str: |
|
""" |
|
Apply language-specific stemming to text. |
|
|
|
Args: |
|
text: Input text to stem |
|
lang: Language code of the text |
|
|
|
Returns: |
|
Stemmed text string |
|
""" |
|
try: |
|
if lang not in self.stemmers: |
|
return text |
|
|
|
words = text.split() |
|
stemmed_words = [self.stemmers[lang].stem(word) for word in words] |
|
return ' '.join(stemmed_words) |
|
|
|
except Exception as e: |
|
self.logger.warning(f"Error in text stemming: {str(e)}") |
|
return text |
|
|
|
def preprocess_text(self, text: str, lang: str = 'en', |
|
clean_options: Dict = None, |
|
do_stemming: bool = True) -> str: |
|
""" |
|
Complete preprocessing pipeline combining cleaning and stemming. |
|
|
|
Args: |
|
text: Input text to preprocess |
|
lang: Language code of the text |
|
clean_options: Dictionary of options to pass to clean_text |
|
do_stemming: Whether to apply stemming |
|
|
|
Returns: |
|
Preprocessed text string |
|
""" |
|
|
|
clean_options = clean_options or {} |
|
|
|
|
|
cleaned_text = self.clean_text(text, lang, **clean_options) |
|
|
|
|
|
if do_stemming: |
|
cleaned_text = self.stem_text(cleaned_text, lang) |
|
|
|
return cleaned_text.strip() |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
preprocessor = TextPreprocessor() |
|
|
|
|
|
examples = { |
|
'en': "Here's an example! This is a test text with @mentions and #hashtags http://example.com", |
|
'es': "¡Hola! Este es un ejemplo de texto en español con números 12345", |
|
'fr': "Voici un exemple de texte en français avec des accents é è à", |
|
'tr': "Bu bir Türkçe örnek metindir ve bazı özel karakterler içerir." |
|
} |
|
|
|
|
|
for lang, text in examples.items(): |
|
print(f"\nProcessing {lang} text:") |
|
print("Original:", text) |
|
processed = preprocessor.preprocess_text(text, lang) |
|
print("Processed:", processed) |