Deeptanshuu's picture
Upload folder using huggingface_hub
d187b57 verified
#!/usr/bin/env python3
import pandas as pd
import numpy as np
from sklearn.model_selection import StratifiedKFold
from pathlib import Path
import json
from collections import defaultdict
import logging
from typing import Dict, Tuple, Set
import time
from itertools import combinations
import hashlib
from tqdm import tqdm
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
TOXICITY_COLUMNS = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']
RARE_CLASSES = ['threat', 'identity_hate']
MIN_SAMPLES_PER_CLASS = 1000 # Minimum samples required per class per language
def create_multilabel_stratification_labels(row: pd.Series) -> str:
"""
Create composite labels that preserve multi-label patterns and language distribution.
Uses iterative label combination to capture co-occurrence patterns.
"""
# Create base label from language
label = str(row['lang'])
# Add individual class information
for col in TOXICITY_COLUMNS:
label += '_' + str(int(row[col]))
# Add co-occurrence patterns for pairs of classes
for c1, c2 in combinations(RARE_CLASSES, 2):
co_occur = int(row[c1] == 1 and row[c2] == 1)
label += '_' + str(co_occur)
return label
def oversample_rare_classes(df: pd.DataFrame) -> pd.DataFrame:
"""
Perform intelligent oversampling of rare classes while maintaining language distribution.
"""
oversampled_dfs = []
original_df = df.copy()
# Process each language separately
for lang in df['lang'].unique():
lang_df = df[df['lang'] == lang]
for rare_class in RARE_CLASSES:
class_samples = lang_df[lang_df[rare_class] == 1]
target_samples = MIN_SAMPLES_PER_CLASS
if len(class_samples) < target_samples:
# Calculate number of samples needed
n_samples = target_samples - len(class_samples)
# Oversample with small random variations
noise = np.random.normal(0, 0.1, (n_samples, len(TOXICITY_COLUMNS)))
oversampled = class_samples.sample(n_samples, replace=True)
# Add noise to continuous values while keeping binary values intact
for col in TOXICITY_COLUMNS:
if col in [rare_class] + [c for c in RARE_CLASSES if c != rare_class]:
continue # Preserve original binary values for rare classes
oversampled[col] = np.clip(
oversampled[col].values + noise[:, TOXICITY_COLUMNS.index(col)],
0, 1
)
oversampled_dfs.append(oversampled)
if oversampled_dfs:
return pd.concat([original_df] + oversampled_dfs, axis=0).reset_index(drop=True)
return original_df
def verify_distributions(
original_df: pd.DataFrame,
train_df: pd.DataFrame,
val_df: pd.DataFrame,
test_df: pd.DataFrame = None
) -> Dict:
"""
Enhanced verification of distributions across splits with detailed metrics.
"""
splits = {
'original': original_df,
'train': train_df,
'val': val_df
}
if test_df is not None:
splits['test'] = test_df
stats = defaultdict(dict)
for split_name, df in splits.items():
# Language distribution
stats[split_name]['language_dist'] = df['lang'].value_counts(normalize=True).to_dict()
# Per-language class distributions
lang_class_dist = {}
for lang in df['lang'].unique():
lang_df = df[df['lang'] == lang]
lang_class_dist[lang] = {
col: {
'positive_ratio': lang_df[col].mean(),
'count': int(lang_df[col].sum()),
'total': len(lang_df)
} for col in TOXICITY_COLUMNS
}
stats[split_name]['lang_class_dist'] = lang_class_dist
# Multi-label co-occurrence patterns
cooccurrence = {}
for c1, c2 in combinations(TOXICITY_COLUMNS, 2):
cooccur_count = ((df[c1] == 1) & (df[c2] == 1)).sum()
cooccurrence[f"{c1}_{c2}"] = {
'count': int(cooccur_count),
'ratio': float(cooccur_count) / len(df)
}
stats[split_name]['cooccurrence_patterns'] = cooccurrence
# Distribution deltas from original
if split_name != 'original':
deltas = {}
for lang in df['lang'].unique():
for col in TOXICITY_COLUMNS:
orig_ratio = splits['original'][splits['original']['lang'] == lang][col].mean()
split_ratio = df[df['lang'] == lang][col].mean()
deltas[f"{lang}_{col}"] = abs(orig_ratio - split_ratio)
stats[split_name]['distribution_deltas'] = deltas
return stats
def check_contamination(
train_df: pd.DataFrame,
val_df: pd.DataFrame,
test_df: pd.DataFrame = None
) -> Dict:
"""
Enhanced contamination check including text similarity detection.
"""
# Determine the correct text column name
text_column = 'comment_text' if 'comment_text' in train_df.columns else 'text'
if text_column not in train_df.columns:
logging.warning("No text column found for contamination check. Skipping text-based contamination detection.")
return {'exact_matches': {'train_val': 0.0}}
def get_text_hash_set(df: pd.DataFrame) -> Set[str]:
return set(df[text_column].str.lower().str.strip().values)
contamination = {
'exact_matches': {
'train_val': len(get_text_hash_set(train_df) & get_text_hash_set(val_df)) / len(train_df)
}
}
if test_df is not None:
contamination['exact_matches'].update({
'train_test': len(get_text_hash_set(train_df) & get_text_hash_set(test_df)) / len(train_df),
'val_test': len(get_text_hash_set(val_df) & get_text_hash_set(test_df)) / len(val_df)
})
return contamination
def split_dataset(
df: pd.DataFrame,
seed: int,
split_mode: str
) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
"""
Perform stratified splitting of the dataset.
"""
# Create stratification labels
logging.info("Creating stratification labels...")
stratify_labels = df.apply(create_multilabel_stratification_labels, axis=1)
# Oversample rare classes in training data only
logging.info("Oversampling rare classes...")
df_with_oversampling = oversample_rare_classes(df)
# Initialize splits
if split_mode == '3':
# First split: 80% train, 20% temp
splitter = StratifiedKFold(n_splits=5, shuffle=True, random_state=seed)
train_idx, temp_idx = next(splitter.split(df, stratify_labels))
# Second split: 10% val, 10% test from temp
temp_df = df.iloc[temp_idx]
temp_labels = stratify_labels.iloc[temp_idx]
splitter = StratifiedKFold(n_splits=2, shuffle=True, random_state=seed)
val_idx, test_idx = next(splitter.split(temp_df, temp_labels))
# Create final splits
train_df = df_with_oversampling.iloc[train_idx] # Use oversampled data for training
val_df = df.iloc[temp_idx].iloc[val_idx] # Use original data for validation
test_df = df.iloc[temp_idx].iloc[test_idx] # Use original data for testing
else: # 2-way split
splitter = StratifiedKFold(n_splits=10, shuffle=True, random_state=seed)
train_idx, val_idx = next(splitter.split(df, stratify_labels))
train_df = df_with_oversampling.iloc[train_idx] # Use oversampled data for training
val_df = df.iloc[val_idx] # Use original data for validation
test_df = None
return train_df, val_df, test_df
def save_splits(
train_df: pd.DataFrame,
val_df: pd.DataFrame,
test_df: pd.DataFrame,
output_dir: str,
stats: Dict
) -> None:
"""
Save splits and statistics to files.
"""
# Create output directory
output_path = Path(output_dir)
output_path.mkdir(parents=True, exist_ok=True)
# Save splits
logging.info("Saving splits...")
train_df.to_csv(output_path / 'train.csv', index=False)
val_df.to_csv(output_path / 'val.csv', index=False)
if test_df is not None:
test_df.to_csv(output_path / 'test.csv', index=False)
# Save statistics
with open(output_path / 'stats.json', 'w', encoding='utf-8') as f:
json.dump(stats, f, indent=2, ensure_ascii=False)
def compute_text_hash(text: str) -> str:
"""
Compute SHA-256 hash of normalized text.
"""
# Normalize text by removing extra whitespace and converting to lowercase
normalized = ' '.join(str(text).lower().split())
return hashlib.sha256(normalized.encode('utf-8')).hexdigest()
def deduplicate_dataset(df: pd.DataFrame) -> Tuple[pd.DataFrame, Dict]:
"""
Remove duplicates using cryptographic hashing while preserving metadata.
"""
logging.info("Starting cryptographic deduplication...")
# Determine text column
text_column = 'comment_text' if 'comment_text' in df.columns else 'text'
if text_column not in df.columns:
raise ValueError(f"No text column found. Available columns: {df.columns}")
# Compute hashes with progress bar
logging.info("Computing cryptographic hashes...")
tqdm.pandas(desc="Hashing texts")
df['text_hash'] = df[text_column].progress_apply(compute_text_hash)
# Get duplicate statistics before removal
total_samples = len(df)
duplicate_hashes = df[df.duplicated('text_hash', keep=False)]['text_hash'].unique()
duplicate_groups = {
hash_val: df[df['text_hash'] == hash_val].index.tolist()
for hash_val in duplicate_hashes
}
# Keep first occurrence of each text while tracking duplicates
dedup_df = df.drop_duplicates('text_hash', keep='first').copy()
dedup_df = dedup_df.drop('text_hash', axis=1)
# Compile deduplication statistics
dedup_stats = {
'total_samples': total_samples,
'unique_samples': len(dedup_df),
'duplicates_removed': total_samples - len(dedup_df),
'duplicate_rate': (total_samples - len(dedup_df)) / total_samples,
'duplicate_groups': {
str(k): {
'count': len(v),
'indices': v
}
for k, v in duplicate_groups.items()
}
}
logging.info(f"Removed {dedup_stats['duplicates_removed']:,} duplicates "
f"({dedup_stats['duplicate_rate']:.2%} of dataset)")
return dedup_df, dedup_stats
def main():
input_csv = 'dataset/processed/MULTILINGUAL_TOXIC_DATASET_AUGMENTED.csv'
output_dir = 'dataset/split'
seed = 42
split_mode = '3'
start_time = time.time()
# Load dataset
logging.info(f"Loading dataset from {input_csv}...")
df = pd.read_csv(input_csv)
# Print column names for debugging
logging.info(f"Available columns: {', '.join(df.columns)}")
# Verify required columns
required_columns = ['lang'] + TOXICITY_COLUMNS
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
raise ValueError(f"Missing required columns: {missing_columns}")
# Perform deduplication
df, dedup_stats = deduplicate_dataset(df)
# Perform splitting
logging.info("Performing stratified split...")
train_df, val_df, test_df = split_dataset(df, seed, split_mode)
# Verify distributions
logging.info("Verifying distributions...")
stats = verify_distributions(df, train_df, val_df, test_df)
# Add deduplication stats
stats['deduplication'] = dedup_stats
# Check contamination
logging.info("Checking for contamination...")
contamination = check_contamination(train_df, val_df, test_df)
stats['contamination'] = contamination
# Save everything
logging.info(f"Saving splits to {output_dir}...")
save_splits(train_df, val_df, test_df, output_dir, stats)
elapsed_time = time.time() - start_time
logging.info(f"Done! Elapsed time: {elapsed_time:.2f} seconds")
# Print summary
print("\nDeduplication Summary:")
print("-" * 50)
print(f"Original samples: {dedup_stats['total_samples']:,}")
print(f"Unique samples: {dedup_stats['unique_samples']:,}")
print(f"Duplicates removed: {dedup_stats['duplicates_removed']:,} ({dedup_stats['duplicate_rate']:.2%})")
print("\nSplit Summary:")
print("-" * 50)
print(f"Total samples: {len(df):,}")
print(f"Train samples: {len(train_df):,} ({len(train_df)/len(df)*100:.1f}%)")
print(f"Validation samples: {len(val_df):,} ({len(val_df)/len(df)*100:.1f}%)")
if test_df is not None:
print(f"Test samples: {len(test_df):,} ({len(test_df)/len(df)*100:.1f}%)")
print("\nDetailed statistics saved to stats.json")
if __name__ == "__main__":
main()