Deeptanshuu's picture
Upload folder using huggingface_hub
d187b57 verified
raw
history blame
13.3 kB
import pandas as pd
import torch
import matplotlib.pyplot as plt
import numpy as np
from datetime import datetime
import logging
from pathlib import Path
from torch.utils.data import DataLoader
import sys
import os
import wandb
from transformers import get_linear_schedule_with_warmup
# Add project root to path
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from model.training_config import TrainingConfig
from model.language_aware_transformer import LanguageAwareTransformer
from model.train import ToxicDataset
from transformers import XLMRobertaTokenizer
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def setup_plot_style():
"""Configure plot styling"""
plt.style.use('seaborn-darkgrid')
plt.rcParams['figure.figsize'] = (12, 12)
plt.rcParams['font.size'] = 12
def setup_wandb():
"""Initialize wandb for validation tracking"""
try:
wandb.init(
project="toxic-comment-classification",
name=f"validation-analysis-{datetime.now().strftime('%Y%m%d-%H%M%S')}",
config={
"analysis_type": "validation_loss",
"timestamp": datetime.now().strftime('%Y%m%d-%H%M%S')
}
)
logger.info("Initialized wandb logging")
except Exception as e:
logger.error(f"Error initializing wandb: {str(e)}")
raise
def load_model_and_data():
"""Load the model and validation data"""
try:
# Initialize config with training settings
config = TrainingConfig(
batch_size=16,
num_workers=16,
lr=2e-5,
weight_decay=0.01,
max_grad_norm=1.0,
warmup_ratio=0.1,
label_smoothing=0.01,
mixed_precision="fp16",
activation_checkpointing=True,
epochs=1 # Number of validation epochs
)
# Load validation data
logger.info("Loading validation and test data...")
val_df = pd.read_csv("dataset/split/val.csv")
test_df = pd.read_csv("dataset/split/test.csv")
combined_df = pd.concat([val_df, test_df])
tokenizer = XLMRobertaTokenizer.from_pretrained(config.model_name)
combined_dataset = ToxicDataset(combined_df, tokenizer, config, mode='combined')
# Create combined dataloader
combined_loader = DataLoader(
combined_dataset,
batch_size=config.batch_size,
shuffle=True, # Enable shuffling
num_workers=config.num_workers,
pin_memory=True,
drop_last=False # Keep all samples
)
# Log dataloader config to wandb
if wandb.run is not None:
wandb.config.update({
'shuffle': True,
'drop_last': False,
'total_validation_steps': len(combined_loader),
'total_validation_samples': len(combined_dataset)
})
# Load model
logger.info("Loading model...")
model = LanguageAwareTransformer(
num_labels=len(config.toxicity_labels),
model_name=config.model_name
)
# Load latest checkpoint
checkpoint_path = Path('weights/toxic_classifier_xlm-roberta-large/pytorch_model.bin')
if checkpoint_path.exists():
checkpoint = torch.load(checkpoint_path, map_location='cpu')
model.load_state_dict(checkpoint)
logger.info("Loaded model checkpoint")
else:
raise FileNotFoundError("No checkpoint found")
# Move model to GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
# Setup optimizer
param_groups = config.get_param_groups(model)
optimizer = torch.optim.AdamW(param_groups)
# Setup scheduler
total_steps = len(combined_loader) * config.epochs
warmup_steps = int(total_steps * config.warmup_ratio)
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=warmup_steps,
num_training_steps=total_steps
)
# Initialize gradient scaler for mixed precision
scaler = torch.cuda.amp.GradScaler(enabled=config.mixed_precision == "fp16")
# Log model configuration to wandb
if wandb.run is not None:
wandb.config.update({
'model_name': config.model_name,
'batch_size': config.batch_size,
'learning_rate': config.lr,
'weight_decay': config.weight_decay,
'max_grad_norm': config.max_grad_norm,
'warmup_ratio': config.warmup_ratio,
'label_smoothing': config.label_smoothing,
'mixed_precision': config.mixed_precision,
'num_workers': config.num_workers,
'activation_checkpointing': config.activation_checkpointing,
'validation_epochs': config.epochs
})
return model, combined_loader, device, optimizer, scheduler, scaler, config
except Exception as e:
logger.error(f"Error loading model and data: {str(e)}")
raise
def collect_validation_losses(model, combined_loader, device, optimizer, scheduler, scaler, config):
"""Run validation and collect step losses across multiple epochs"""
try:
logger.warning("This is an analysis run on combined val+test data - model will not be saved or updated")
# Ensure we're in eval mode and no gradients are computed
model.eval()
for param in model.parameters():
param.requires_grad = False
all_losses = []
epoch_losses = []
for epoch in range(config.epochs):
logger.info(f"\nStarting validation epoch {epoch+1}/{config.epochs}")
total_loss = 0
num_batches = len(combined_loader)
epoch_start_time = datetime.now()
with torch.no_grad(): # Extra safety to ensure no gradients
for step, batch in enumerate(combined_loader):
# Move batch to device
batch = {k: v.to(device) if isinstance(v, torch.Tensor) else v
for k, v in batch.items()}
# Forward pass with mixed precision
with torch.cuda.amp.autocast(enabled=config.mixed_precision != "no"):
outputs = model(**batch)
loss = outputs['loss'].item()
total_loss += loss
# Calculate running averages
avg_loss = total_loss / (step + 1)
# Get learning rates
lrs = [group['lr'] for group in optimizer.param_groups]
# Log to wandb
wandb.log({
'val/step_loss': loss,
'val/running_avg_loss': avg_loss,
'val/progress': (step + 1) / num_batches * 100,
'val/learning_rate': lrs[0], # Base learning rate
'val/batch_size': config.batch_size,
'val/epoch': epoch + 1,
'val/global_step': epoch * num_batches + step
})
# Log progress
if step % 10 == 0:
elapsed_time = datetime.now() - epoch_start_time
steps_per_sec = (step + 1) / elapsed_time.total_seconds()
remaining_steps = num_batches - (step + 1)
eta_seconds = remaining_steps / steps_per_sec if steps_per_sec > 0 else 0
logger.info(
f"Epoch [{epoch+1}/{config.epochs}] "
f"Step [{step+1}/{num_batches}] "
f"Loss: {loss:.4f} "
f"Avg Loss: {avg_loss:.4f} "
f"LR: {lrs[0]:.2e} "
f"ETA: {int(eta_seconds)}s"
)
# Calculate epoch statistics
epoch_avg_loss = total_loss / num_batches
epoch_losses.append({
'epoch': epoch + 1,
'avg_loss': epoch_avg_loss,
'elapsed_time': (datetime.now() - epoch_start_time).total_seconds()
})
# Log epoch metrics to wandb
wandb.log({
'val/epoch_avg_loss': epoch_avg_loss,
'val/epoch_number': epoch + 1,
'val/epoch_time': epoch_losses[-1]['elapsed_time']
})
# Clear GPU memory after each epoch
torch.cuda.empty_cache()
return epoch_losses
except Exception as e:
logger.error(f"Error collecting validation losses: {str(e)}")
raise
def plot_validation_losses(epoch_losses):
"""Plot validation epoch losses"""
try:
setup_plot_style()
# Create figure
fig, ax = plt.subplots()
# Extract data
epochs = [d['epoch'] for d in epoch_losses]
losses = [d['avg_loss'] for d in epoch_losses]
# Plot epoch losses
ax.plot(epochs, losses, 'go-', label='Epoch Average Loss', linewidth=2, markersize=8)
# Add trend line
z = np.polyfit(epochs, losses, 1)
p = np.poly1d(z)
ax.plot(epochs, p(epochs), "r--", alpha=0.8, label='Loss Trend')
# Customize plot
ax.set_title('Validation Epoch Losses')
ax.set_xlabel('Epoch')
ax.set_ylabel('Average Loss')
ax.legend()
ax.grid(True, linestyle='--', alpha=0.7)
# Adjust layout
plt.tight_layout()
# Create output directory if it doesn't exist
output_dir = Path('analysis/plots')
output_dir.mkdir(parents=True, exist_ok=True)
# Save plot
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
output_path = output_dir / f'validation_losses_{timestamp}.png'
plt.savefig(output_path, dpi=300, bbox_inches='tight')
logger.info(f"Plot saved to {output_path}")
# Log plot to wandb
wandb.log({
"val/loss_plot": wandb.Image(str(output_path))
})
# Show plot
plt.show()
except Exception as e:
logger.error(f"Error plotting validation losses: {str(e)}")
raise
def calculate_loss_statistics(epoch_losses):
"""Calculate and print loss statistics"""
try:
losses = [d['avg_loss'] for d in epoch_losses]
stats = {
'Mean Loss': np.mean(losses),
'Std Loss': np.std(losses),
'Min Loss': np.min(losses),
'Max Loss': np.max(losses),
'Best Epoch': epoch_losses[np.argmin(losses)]['epoch']
}
# Log statistics to wandb
wandb.log({
'val/mean_loss': stats['Mean Loss'],
'val/std_loss': stats['Std Loss'],
'val/min_loss': stats['Min Loss'],
'val/max_loss': stats['Max Loss'],
'val/best_epoch': stats['Best Epoch']
})
# Print statistics
print("\nValidation Loss Statistics:")
for metric_name, value in stats.items():
if metric_name == 'Best Epoch':
print(f"{metric_name}: {int(value)}")
else:
print(f"{metric_name}: {value:.4f}")
return stats
except Exception as e:
logger.error(f"Error calculating statistics: {str(e)}")
raise
def main():
try:
# Initialize wandb
setup_wandb()
# Load model and data
logger.info("Loading model and data...")
model, combined_loader, device, optimizer, scheduler, scaler, config = load_model_and_data()
# Collect validation losses
logger.info("Collecting validation losses...")
epoch_losses = collect_validation_losses(
model, combined_loader, device, optimizer, scheduler, scaler, config
)
# Plot losses
logger.info("Plotting validation losses...")
plot_validation_losses(epoch_losses)
# Calculate and print statistics
logger.info("Calculating statistics...")
calculate_loss_statistics(epoch_losses)
except Exception as e:
logger.error(f"Error in main: {str(e)}")
raise
finally:
# Clean up
torch.cuda.empty_cache()
# Finish wandb run
wandb.finish()
if __name__ == "__main__":
try:
main()
except Exception as e:
logger.error(f"Script failed: {str(e)}")
raise