File size: 7,878 Bytes
d187b57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
#!/usr/bin/env python3
"""
Thoroughly shuffle the dataset while maintaining class distributions and data integrity.
This script implements stratified shuffling to ensure balanced representation of classes
and languages in the shuffled data.
"""
import pandas as pd
import numpy as np
from pathlib import Path
import argparse
from sklearn.model_selection import StratifiedKFold
from collections import defaultdict
import logging
import json
from typing import List, Dict, Tuple
import sys
from datetime import datetime
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(sys.stdout),
logging.FileHandler(f'logs/shuffle_{datetime.now().strftime("%Y%m%d_%H%M%S")}.log')
]
)
logger = logging.getLogger(__name__)
def create_stratification_label(row: pd.Series, toxicity_labels: List[str]) -> str:
"""
Create a composite label for stratification that captures the combination of
toxicity labels and language.
"""
# Convert toxicity values to binary string
toxicity_str = ''.join(['1' if row[label] == 1 else '0' for label in toxicity_labels])
# Combine with language
return f"{row['lang']}_{toxicity_str}"
def validate_data(df: pd.DataFrame, toxicity_labels: List[str]) -> bool:
"""
Validate the dataset for required columns and data integrity.
"""
try:
# Check required columns
required_columns = ['comment_text', 'lang'] + toxicity_labels
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
raise ValueError(f"Missing required columns: {missing_columns}")
# Check for null values in critical columns
null_counts = df[required_columns].isnull().sum()
if null_counts.any():
logger.warning(f"Found null values:\n{null_counts[null_counts > 0]}")
# Validate label values are binary
for label in toxicity_labels:
invalid_values = df[label][~df[label].isin([0, 1, np.nan])]
if not invalid_values.empty:
raise ValueError(f"Found non-binary values in {label}: {invalid_values.unique()}")
# Validate text content
if df['comment_text'].str.len().min() == 0:
logger.warning("Found empty comments in dataset")
return True
except Exception as e:
logger.error(f"Data validation failed: {str(e)}")
return False
def analyze_distribution(df: pd.DataFrame, toxicity_labels: List[str]) -> Dict:
"""
Analyze the class distribution and language distribution in the dataset.
"""
stats = {
'total_samples': len(df),
'language_distribution': df['lang'].value_counts().to_dict(),
'class_distribution': {
label: {
'positive': int(df[label].sum()),
'negative': int(len(df) - df[label].sum()),
'ratio': float(df[label].mean())
}
for label in toxicity_labels
},
'language_class_distribution': defaultdict(dict)
}
# Calculate per-language class distributions
for lang in df['lang'].unique():
lang_df = df[df['lang'] == lang]
stats['language_class_distribution'][lang] = {
label: {
'positive': int(lang_df[label].sum()),
'negative': int(len(lang_df) - lang_df[label].sum()),
'ratio': float(lang_df[label].mean())
}
for label in toxicity_labels
}
return stats
def shuffle_dataset(
input_file: str,
output_file: str,
toxicity_labels: List[str],
n_splits: int = 10,
random_state: int = 42
) -> Tuple[bool, Dict]:
"""
Thoroughly shuffle the dataset while maintaining class distributions.
Uses stratified k-fold splitting for balanced shuffling.
"""
try:
logger.info(f"Loading dataset from {input_file}")
df = pd.read_csv(input_file)
# Validate data
if not validate_data(df, toxicity_labels):
return False, {}
# Analyze initial distribution
initial_stats = analyze_distribution(df, toxicity_labels)
logger.info("Initial distribution stats:")
logger.info(json.dumps(initial_stats, indent=2))
# Create stratification labels
logger.info("Creating stratification labels")
df['strat_label'] = df.apply(
lambda row: create_stratification_label(row, toxicity_labels),
axis=1
)
# Initialize stratified k-fold
skf = StratifiedKFold(
n_splits=n_splits,
shuffle=True,
random_state=random_state
)
# Get shuffled indices using stratified split
logger.info(f"Performing stratified shuffling with {n_splits} splits")
all_indices = []
for _, fold_indices in skf.split(df, df['strat_label']):
all_indices.extend(fold_indices)
# Create shuffled dataframe
shuffled_df = df.iloc[all_indices].copy()
shuffled_df = shuffled_df.drop('strat_label', axis=1)
# Analyze final distribution
final_stats = analyze_distribution(shuffled_df, toxicity_labels)
# Save shuffled dataset
logger.info(f"Saving shuffled dataset to {output_file}")
shuffled_df.to_csv(output_file, index=False)
# Save distribution statistics
stats_file = Path(output_file).parent / 'shuffle_stats.json'
stats = {
'initial': initial_stats,
'final': final_stats,
'shuffle_params': {
'n_splits': n_splits,
'random_state': random_state
}
}
with open(stats_file, 'w') as f:
json.dump(stats, f, indent=2)
logger.info(f"Shuffling complete. Statistics saved to {stats_file}")
return True, stats
except Exception as e:
logger.error(f"Error shuffling dataset: {str(e)}")
return False, {}
def main():
parser = argparse.ArgumentParser(description='Thoroughly shuffle the dataset.')
parser.add_argument(
'--input',
type=str,
required=True,
help='Input CSV file path'
)
parser.add_argument(
'--output',
type=str,
required=True,
help='Output CSV file path'
)
parser.add_argument(
'--splits',
type=int,
default=10,
help='Number of splits for stratified shuffling (default: 10)'
)
parser.add_argument(
'--seed',
type=int,
default=42,
help='Random seed (default: 42)'
)
args = parser.parse_args()
# Create output directory if it doesn't exist
Path(args.output).parent.mkdir(parents=True, exist_ok=True)
# Create logs directory if it doesn't exist
Path('logs').mkdir(exist_ok=True)
# Define toxicity labels
toxicity_labels = [
'toxic', 'severe_toxic', 'obscene', 'threat',
'insult', 'identity_hate'
]
# Shuffle dataset
success, stats = shuffle_dataset(
args.input,
args.output,
toxicity_labels,
args.splits,
args.seed
)
if success:
logger.info("Dataset shuffling completed successfully")
# Print final class distribution
for label, dist in stats['final']['class_distribution'].items():
logger.info(f"{label}: {dist['ratio']:.3f} "
f"(+:{dist['positive']}, -:{dist['negative']})")
else:
logger.error("Dataset shuffling failed")
sys.exit(1)
if __name__ == '__main__':
main() |