File size: 64,144 Bytes
d187b57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
# Fix for torch.classes watchdog errors
import sys
class ModuleProtector:
    def __init__(self, module_name):
        self.module_name = module_name
        self.original_module = sys.modules.get(module_name)
        
    def __enter__(self):
        if self.module_name in sys.modules:
            self.original_module = sys.modules[self.module_name]
            sys.modules[self.module_name] = None
            
    def __exit__(self, *args):
        if self.original_module is not None:
            sys.modules[self.module_name] = self.original_module

# Temporarily remove torch.classes from sys.modules to prevent Streamlit's file watcher from accessing it
with ModuleProtector('torch.classes'):
    import streamlit as st

# Set page configuration - MUST BE THE FIRST STREAMLIT COMMAND
st.set_page_config(
    page_title="Multilingual Toxicity Analyzer",
    page_icon="",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Now import all other dependencies
import torch
import os
import plotly.graph_objects as go
import pandas as pd
from model.inference_optimized import OptimizedToxicityClassifier
import langid
from typing import List, Dict
import time
import psutil
import platform
try:
    import cpuinfo
except ImportError:
    cpuinfo = None
from streamlit_extras.colored_header import colored_header
from streamlit_extras.add_vertical_space import add_vertical_space
from streamlit_extras.stylable_container import stylable_container
from streamlit_extras.card import card
from streamlit_extras.metric_cards import style_metric_cards

# Configure paths
ONNX_MODEL_PATH = os.environ.get("ONNX_MODEL_PATH", "weights/toxic_classifier.onnx")
PYTORCH_MODEL_DIR = os.environ.get("PYTORCH_MODEL_DIR", "weights/toxic_classifier_xlm-roberta-large")
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# Get GPU info if available
def get_gpu_info():
    if DEVICE == "cuda":
        try:
            gpu_name = torch.cuda.get_device_name(0)
            gpu_memory_total = torch.cuda.get_device_properties(0).total_memory / 1024**3  # Convert to GB
            gpu_memory_allocated = torch.cuda.memory_allocated(0) / 1024**3  # Convert to GB
            cuda_version = torch.version.cuda
            
            memory_info = f"{gpu_memory_allocated:.1f}/{gpu_memory_total:.1f} GB"
            return f"{gpu_name} (CUDA {cuda_version}, Memory: {memory_info})"
        except Exception as e:
            return "CUDA device"
    return "CPU"

# Get CPU information
def get_cpu_info():
    try:
        cpu_percent = psutil.cpu_percent(interval=0.1)
        cpu_count = psutil.cpu_count(logical=True)
        cpu_freq = psutil.cpu_freq()
        
        if cpu_freq:
            freq_info = f"{cpu_freq.current/1000:.2f} GHz"
        else:
            freq_info = "Unknown"
            
        # Try multiple methods to get CPU model name
        cpu_model = None
        
        # Method 1: Try reading from /proc/cpuinfo directly
        try:
            with open('/proc/cpuinfo', 'r') as f:
                for line in f:
                    if 'model name' in line:
                        cpu_model = line.split(':', 1)[1].strip()
                        break
        except:
            pass
            
        # Method 2: If Method 1 fails, try using platform.processor()
        if not cpu_model:
            cpu_model = platform.processor()
            
        # Method 3: If still no result, try using platform.machine()
        if not cpu_model or cpu_model == '':
            cpu_model = platform.machine()
            
        # Method 4: Final fallback to using psutil
        if not cpu_model or cpu_model == '':
            try:
                import cpuinfo
                cpu_model = cpuinfo.get_cpu_info()['brand_raw']
            except:
                pass
        
        # Clean up the model name
        if cpu_model:
            # Remove common unnecessary parts
            replacements = [
                '(R)', '(TM)', '(r)', '(tm)', 'CPU', '@', '  ', 'Processor'
            ]
            for r in replacements:
                cpu_model = cpu_model.replace(r, ' ')
            # Clean up extra spaces
            cpu_model = ' '.join(cpu_model.split())
            # Limit length
            if len(cpu_model) > 40:
                cpu_model = cpu_model[:37] + "..."
        else:
            cpu_model = "Unknown CPU"
        
        return {
            "name": cpu_model,
            "cores": cpu_count,
            "freq": freq_info,
            "usage": f"{cpu_percent:.1f}%"
        }
    except Exception as e:
        return {
            "name": "CPU",
            "cores": "Unknown",
            "freq": "Unknown",
            "usage": "Unknown"
        }

# Get RAM information
def get_ram_info():
    try:
        ram = psutil.virtual_memory()
        ram_total = ram.total / (1024**3)  # Convert to GB
        ram_used = ram.used / (1024**3)    # Convert to GB
        ram_percent = ram.percent
        
        return {
            "total": f"{ram_total:.1f} GB",
            "used": f"{ram_used:.1f} GB",
            "percent": f"{ram_percent:.1f}%"
        }
    except Exception as e:
        return {
            "total": "Unknown",
            "used": "Unknown",
            "percent": "Unknown"
        }

# Update system resource information
def update_system_resources():
    cpu_info = get_cpu_info()
    ram_info = get_ram_info()
    
    return {
        "cpu": cpu_info,
        "ram": ram_info
    }

# Initialize system information
GPU_INFO = get_gpu_info()
SYSTEM_INFO = update_system_resources()

# Add a function to update GPU memory info in real-time
def update_gpu_info():
    if DEVICE == "cuda":
        try:
            gpu_memory_allocated = torch.cuda.memory_allocated(0) / 1024**3  # Convert to GB
            gpu_memory_total = torch.cuda.get_device_properties(0).total_memory / 1024**3  # Convert to GB
            return f"{gpu_memory_allocated:.1f}/{gpu_memory_total:.1f} GB"
        except:
            return "N/A"
    return "N/A"

# Helper function to convert hex to rgba
def hex_to_rgba(hex_color, alpha=1.0):
    hex_color = hex_color.lstrip('#')
    r = int(hex_color[0:2], 16)
    g = int(hex_color[2:4], 16)
    b = int(hex_color[4:6], 16)
    return f'rgba({r}, {g}, {b}, {alpha})'

# Supported languages with emoji flags
SUPPORTED_LANGUAGES = {
    'en': {'name': 'English', 'flag': '๐Ÿ‡บ๐Ÿ‡ธ'},
    'ru': {'name': 'Russian', 'flag': '๐Ÿ‡ท๐Ÿ‡บ'},
    'tr': {'name': 'Turkish', 'flag': '๐Ÿ‡น๐Ÿ‡ท'},
    'es': {'name': 'Spanish', 'flag': '๐Ÿ‡ช๐Ÿ‡ธ'},
    'fr': {'name': 'French', 'flag': '๐Ÿ‡ซ๐Ÿ‡ท'},
    'it': {'name': 'Italian', 'flag': '๐Ÿ‡ฎ๐Ÿ‡น'},
    'pt': {'name': 'Portuguese', 'flag': '๐Ÿ‡ต๐Ÿ‡น'}
}

# Language examples - expanded with multiple examples per language, categorized as toxic or non-toxic
LANGUAGE_EXAMPLES = {
    'en': {
        'toxic': [
            "You are such an idiot, nobody likes your stupid content.",
            "Shut up you worthless piece of garbage. Everyone hates you.",
            "This is the most pathetic thing I've ever seen. Only losers would think this is good.",
            "Just kill yourself already, the world would be better without you."
        ],
        'non_toxic': [
            "I disagree with your opinion, but I appreciate your perspective.",
            "This content could use some improvement, but I see the effort you put into it.",
            "While I don't personally enjoy this type of content, others might find it valuable.",
            "Thank you for sharing your thoughts on this complex topic."
        ]
    },
    'ru': {
        'toxic': [
            "ะขั‹ ะฟะพะปะฝั‹ะน ะฟั€ะธะดัƒั€ะพะบ, ั‚ะฒะพะน ะบะพะฝั‚ะตะฝั‚ ะฝะธะบะพะผัƒ ะฝะต ะฝั€ะฐะฒะธั‚ัั.",
            "ะ—ะฐั‚ะบะฝะธััŒ, ะฑะตัะฟะพะปะตะทะฝั‹ะน ะบัƒัะพะบ ะผัƒัะพั€ะฐ. ะ’ัะต ั‚ะตะฑั ะฝะตะฝะฐะฒะธะดัั‚.",
            "ะญั‚ะพ ัะฐะผะฐั ะถะฐะปะบะฐั ะฒะตั‰ัŒ, ะบะพั‚ะพั€ัƒัŽ ั ะบะพะณะดะฐ-ะปะธะฑะพ ะฒะธะดะตะป. ะขะพะปัŒะบะพ ะฝะตัƒะดะฐั‡ะฝะธะบะธ ะดัƒะผะฐัŽั‚, ั‡ั‚ะพ ัั‚ะพ ั…ะพั€ะพัˆะพ.",
            "ะŸะพั‡ะตะผัƒ ะฑั‹ ั‚ะตะฑะต ะฟั€ะพัั‚ะพ ะฝะต ะธัั‡ะตะทะฝัƒั‚ัŒ ะฝะฐั…ั€ะตะฝ? ะะธะบั‚ะพ ะฝะต ะฑัƒะดะตั‚ ัะบัƒั‡ะฐั‚ัŒ ะฟะพ ั‚ะตะฑะต."
        ],
        'non_toxic': [
            "ะฏ ะฝะต ัะพะณะปะฐัะตะฝ ั ะฒะฐัˆะธะผ ะผะฝะตะฝะธะตะผ, ะฝะพ ัƒะฒะฐะถะฐัŽ ะฒะฐัˆัƒ ั‚ะพั‡ะบัƒ ะทั€ะตะฝะธั.",
            "ะญั‚ะพั‚ ะบะพะฝั‚ะตะฝั‚ ะผะพะถะฝะพ ัƒะปัƒั‡ัˆะธั‚ัŒ, ะฝะพ ั ะฒะธะถัƒ, ัะบะพะปัŒะบะพ ัƒัะธะปะธะน ะฒั‹ ะฒ ะฝะตะณะพ ะฒะปะพะถะธะปะธ.",
            "ะฅะพั‚ั ะผะฝะต ะปะธั‡ะฝะพ ะฝะต ะฝั€ะฐะฒะธั‚ัั ั‚ะฐะบะพะน ะบะพะฝั‚ะตะฝั‚, ะดั€ัƒะณะธะต ะผะพะณัƒั‚ ะฝะฐะนั‚ะธ ะตะณะพ ะฟะพะปะตะทะฝั‹ะผ.",
            "ะกะฟะฐัะธะฑะพ, ั‡ั‚ะพ ะฟะพะดะตะปะธะปะธััŒ ัะฒะพะธะผะธ ะผั‹ัะปัะผะธ ะฝะฐ ัั‚ัƒ ัะปะพะถะฝัƒัŽ ั‚ะตะผัƒ."
        ]
    },
    'tr': {
        'toxic': [
            "Sen tam bir aptalsฤฑn, kimse senin aptalca iรงeriฤŸini beฤŸenmiyor.",
            "Kapa รงeneni deฤŸersiz รงรถp parรงasฤฑ. Herkes senden nefret ediyor.",
            "Bu gรถrdรผฤŸรผm en acฤฑklฤฑ ลŸey. Sadece lanet olasฤฑ kaybedenler bunun iyi olduฤŸunu dรผลŸรผnรผr.",
            "Dรผnya sensiz daha iyi olurdu, kaybol git."
        ],
        'non_toxic': [
            "Fikrinize katฤฑlmฤฑyorum ama bakฤฑลŸ aรงฤฑnฤฑzฤฑ takdir ediyorum.",
            "Bu iรงerik biraz geliลŸtirilebilir, ancak gรถsterdiฤŸiniz รงabayฤฑ gรถrรผyorum.",
            "ลžahsen bu tรผr iรงerikten hoลŸlanmasam da, baลŸkalarฤฑ bunu deฤŸerli bulabilir.",
            "Bu karmaลŸฤฑk konu hakkฤฑndaki dรผลŸรผncelerinizi paylaลŸtฤฑฤŸฤฑnฤฑz iรงin teลŸekkรผr ederim."
        ]
    },
    'es': {
        'toxic': [
            "Eres un completo idiota y nadie te quiere.",
            "Cรกllate, pedazo de basura inรบtil. Todos te odian.",
            "Esto es lo mรกs patรฉtico que he visto nunca. Solo los perdedores pensarรญan que esto es bueno.",
            "El mundo estarรญa mejor sin ti, deberรญas desaparecer, joder."
        ],
        'non_toxic': [
            "No estoy de acuerdo con tu opiniรณn, pero aprecio tu perspectiva.",
            "Este contenido podrรญa mejorarse, pero veo el esfuerzo que has puesto en รฉl.",
            "Aunque personalmente no disfruto este tipo de contenido, otros podrรญan encontrarlo valioso.",
            "Gracias por compartir tus pensamientos sobre este tema tan complejo."
        ]
    },
    'fr': {
        'toxic': [
            "Tu es tellement stupide, personne n'aime ton contenu minable.",
            "Ferme-la, espรจce de dรฉchet inutile. Tout le monde te dรฉteste.",
            "C'est la chose la plus pathรฉtique que j'ai jamais vue. Seuls les loosers penseraient que c'est bien.",
            "Le monde serait meilleur sans toi, connard, va-t'en."
        ],
        'non_toxic': [
            "Je ne suis pas d'accord avec ton opinion, mais j'apprรฉcie ta perspective.",
            "Ce contenu pourrait รชtre amรฉliorรฉ, mais je vois l'effort que tu y as mis.",
            "Bien que personnellement je n'apprรฉcie pas ce type de contenu, d'autres pourraient le trouver prรฉcieux.",
            "Merci d'avoir partagรฉ tes rรฉflexions sur ce sujet complexe."
        ]
    },
    'it': {
        'toxic': [
            "Sei un tale idiota, a nessuno piace il tuo contenuto stupido.",
            "Chiudi quella bocca, pezzo di spazzatura inutile. Tutti ti odiano.",
            "Questa รจ la cosa piรน patetica che abbia mai visto. Solo i perdenti penserebbero che sia buona.",
            "Il mondo sarebbe migliore senza di te, sparisci."
        ],
        'non_toxic': [
            "Non sono d'accordo con la tua opinione, ma apprezzo la tua prospettiva.",
            "Questo contenuto potrebbe essere migliorato, ma vedo lo sforzo che ci hai messo.",
            "Anche se personalmente non apprezzo questo tipo di contenuto, altri potrebbero trovarlo utile.",
            "Grazie per aver condiviso i tuoi pensieri su questo argomento complesso."
        ]
    },
    'pt': {
        'toxic': [
            "Vocรช รฉ um idiota completo, ninguรฉm gosta do seu conteรบdo estรบpido.",
            "Cale a boca, seu pedaรงo de lixo inรบtil. Todos te odeiam.",
            "Isso รฉ a coisa mais patรฉtica que eu jรก vi. Sรณ perdedores pensariam que isso รฉ bom.",
            "O mundo seria melhor sem vocรช, desapareรงa."
        ],
        'non_toxic': [
            "Eu discordo da sua opiniรฃo, mas aprecio sua perspectiva.",
            "Este conteรบdo poderia ser melhorado, mas vejo o esforรงo que vocรช colocou nele.",
            "Embora eu pessoalmente nรฃo goste deste tipo de conteรบdo, outros podem achรก-lo valioso.",
            "Obrigado por compartilhar seus pensamentos sobre este tema complexo."
        ]
    }
}

# Theme colors - Light theme with black text
THEME = {
    "primary": "#2D3142",
    "background": "#FFFFFF",
    "surface": "#FFFFFF",
    "text": "#000000",  # Changed to pure black for maximum contrast
    "text_secondary": "#FFFFFF",  # For text that needs to be white
    "button": "#000000",  # Dark black for buttons
    "toxic": "#E53935",  # Darker red for better contrast
    "non_toxic": "#2E7D32",  # Darker green for better contrast
    "warning": "#F57C00",  # Darker orange for better contrast
    "info": "#1976D2",  # Darker blue for better contrast
    "sidebar_bg": "#FFFFFF",
    "card_bg": "white",
    "input_bg": "#F8F9FA"
}

# Custom CSS for better styling
st.markdown(f"""
<style>
    @import url('https://fonts.googleapis.com/css2?family=Space+Grotesk:wght@300;400;500;600;700&display=swap');
    
    :root, html, body, [class*="css"] {{
        font-family: 'Space Grotesk', sans-serif;
        color: {THEME["text"]} !important;
        border: 1px solid {THEME["text"]} !important;
        overflow-y: scroll;
        overflow-x: hidden;
    }}
    
    svg, path{{
        color: {THEME["text"]};
    }}
    
    /* Heading font styling */
    h1, h2, h3, h4, h5, h6 {{
        font-family: 'Space Grotesk', sans-serif;
        letter-spacing: -0.02em;
        color: {THEME["text"]};
    }}
    
    .st-emotion{{
        background-color: {THEME["background"]};
    }}
    
    [data-testid="stMarkdownContainer"] h1,
    [data-testid="stMarkdownContainer"] h2,
    [data-testid="stMarkdownContainer"] h3 {{
        font-family: 'Space Grotesk', sans-serif;
        font-weight: 600;
        color: {THEME["text"]};
    }}

    /* Examples section styling */
    .examples-section {{
        margin-top: 15px;
        color: {THEME["text"]};
    }}
    
    .example-button {{
        text-align: left;
        overflow: hidden;
        text-overflow: ellipsis;
        white-space: nowrap;
        margin-bottom: 5px;
        transition: all 0.2s ease;
        background-color: {THEME["input_bg"]};
        border-radius: 8px;
        color: {THEME["text"]};
    }}
    
    .example-button:hover {{
        transform: translateX(3px);
        background-color: {hex_to_rgba(THEME["primary"], 0.1)};
    }}
    
    /* Style tab content */
    .stTabs [data-baseweb="tab-panel"] {{
        padding-top: 1rem;
        color: {THEME["text"]};
    }}
    
    /* Tab content styling */
    .stTabs [data-baseweb="tab"] {{
        font-family: 'Space Grotesk', sans-serif;
        font-weight: 500;
        color: {THEME["text"]};
    }}
    
    /* Style expandable sections */
    div[data-testid="stExpander"] {{
        margin-bottom: 10px !important;
        background-color: {THEME["card_bg"]};
        border: 1px solid {hex_to_rgba(THEME["text"], 0.1)};
        color: {THEME["text"]} !important;
    }}
    
    div[data-testid="stExpander"] div[data-testid="stExpanderContent"] {{
        max-height: 300px;
        overflow-y: auto;
        padding: 5px 10px;
    }}

    /* Hardware info styles */
    .hardware-info {{
        background-color: {hex_to_rgba(THEME["primary"], 0.05)};
        border-radius: 10px;
        padding: 12px;
        margin: 8px 0;
        border-left: 3px solid {THEME["primary"]};
        color: {THEME["text"]};
    }}
    
    .hardware-title {{
        font-family: 'Space Grotesk', sans-serif;
        font-weight: 600;
        font-size: 1.1rem;
        margin-bottom: 8px;
        display: flex;
        align-items: center;
        color: {THEME["primary"]};
    }}
    
    /* Override Streamlit's default background */
    .stApp {{
        background-color: {THEME["background"]};
    }}
    
    .st-emotion-cache-h4xjwg{{
        background-color: {THEME["background"]};
        color: {THEME["text"]};
    }}
    
    /* Code editor and text areas */
    .stTextInput>div>div>input, .stTextArea>div>div>textarea {{
        background-color: {THEME["input_bg"]};
        color: {THEME["text"]};
        font-family: 'Space Grotesk', sans-serif;
    }}

    /* Sidebar styling */
    section[data-testid="stSidebar"] {{
        background-color: {THEME["sidebar_bg"]};
        color: {THEME["text"]};
    }}
    
    section[data-testid="stSidebar"] [data-testid="stMarkdown"] {{
        color: {THEME["text"]};
        background-color: {THEME["background"]};
    }}
    
    section[data-testid="stSidebar"] .stSelectbox label,
    section[data-testid="stSidebar"] .stButton label {{
        color: {THEME["text"]} !important;
        background-color: {THEME["background"]} !important;
    }}
    
    section[data-testid="stSidebar"] h3 {{
        color: {THEME["text"]};
        background-color: {THEME["background"]};
    }}
    
    section[data-testid="stSidebar"] .main-title {{
        color: {THEME["text"]};
        -webkit-text-fill-color: {THEME["text"]};
        background-color: {THEME["background"]};
    }}
    
    section[data-testid="stSidebar"] h1 {{
        color: {THEME["text"]};
        background-color: {THEME["background"]};
    }}
    
    .main-title {{
        font-family: 'Space Grotesk', sans-serif;
        font-size: 2.8rem;
        font-weight: 700;
        color: {THEME["text"]};
        margin-bottom: 1rem;
        letter-spacing: -0.03em;
    }}
    
    .subtitle {{
        font-family: 'Space Grotesk', sans-serif;
        font-size: 1.2rem;
        font-weight: 400;
        color: {THEME["text"]};
        margin-bottom: 2rem;
    }}
    
    .category-label {{
        font-weight: 600;
    }}
    
    .toxic-category {{
        padding: 3px 8px;
        border-radius: 12px;
        background-color: {hex_to_rgba(THEME["toxic"], 0.13)};
        border: 1px solid {hex_to_rgba(THEME["toxic"], 0.31)};
        margin-right: 5px;
        font-weight: 500;
        display: inline-block;
        margin-bottom: 5px;
        font-size: 0.9rem;
        color: {THEME["toxic"]};
        transition: all 0.3s ease;
    }}
    
    .toxic-result {{
        font-family: 'Space Grotesk', sans-serif;
        font-size: 1.2rem;
        font-weight: 700;
        padding: 4px 12px;
        border-radius: 8px;
        display: inline-block;
        box-shadow: 0 2px 8px rgba(0,0,0,0.1);
        transition: all 0.3s ease;
        letter-spacing: -0.02em;
    }}
    
    .model-info {{
        border-left: 3px solid {THEME["primary"]};
        padding-left: 10px;
        transition: all 0.3s ease;
    }}
    
    .stButton button {{
        font-family: 'Space Grotesk', sans-serif;
        border-radius: 8px;
        border: none;
        font-weight: 600;
        transition: all 0.3s ease;
        box-shadow: 0 2px 5px rgba(0,0,0,0.1);
        background-color: {THEME["button"]} !important;
        color: {THEME["text_secondary"]} !important;
        padding: 0.75rem 2rem;
        font-size: 1.1rem;
        letter-spacing: 0.02em;
    }}
    
    .stButton button:hover {{
        transform: translateY(-2px);
        box-shadow: 0 4px 10px rgba(0,0,0,0.2);
        background-color: {hex_to_rgba(THEME["button"], 0.9)} !important;
    }}
    

    
    /* Cards for metrics at top */
    div[data-testid="metric-container"] {{
        background-color: {THEME["card_bg"]};
        border-radius: 10px;
        padding: 15px;
        box-shadow: 0 2px 6px rgba(0,0,0,0.05);
        border: 1px solid {hex_to_rgba(THEME["text"], 0.1)};
    }}
    
    /* Fix metric label colors - more specific selectors */
    div[data-testid="metric-container"] > div:first-child {{
        color: {THEME["text"]} !important;
        font-family: 'Space Grotesk', sans-serif;
        font-weight: 500;
    }}
    
    div[data-testid="metric-container"] > div:first-child > label {{
        color: {THEME["text"]} !important;
    }}
    
    /* Target the specific label element */
    div[data-testid="stMetricLabel"] {{
        color: {THEME["text"]} !important;
        font-weight: 500 !important;
    }}
    
    div[data-testid="stMetricLabel"] > div {{
        color: {THEME["text"]} !important;
    }}
    
    /* Ensure metric value is also properly colored */
    div[data-testid="stMetricValue"] {{
        color: {THEME["text"]} !important;
        font-weight: 600 !important;
    }}
    
    /* Target all text within metric containers */
    div[data-testid="metric-container"] * {{
        color: {THEME["text"]} !important;
    }}
    
    /* Additional specific targeting for metric labels */
    [data-testid="metric-container-label"] {{
        color: {THEME["text"]} !important;
    }}
    
    [data-testid="metric-container-label-value"] {{
        color: {THEME["text"]} !important;
    }}
    
    /* Force black color on metric labels */
    div[data-testid="metric-container"] label,
    div[data-testid="metric-container"] div[role="button"] {{
        color: {THEME["text"]} !important;
    }}
    
    /* Remove default Streamlit menu and footer */
    #MainMenu {{visibility: hidden;}}
    footer {{visibility: hidden;}}
    
    /* Style dataframe */
    .stDataFrame {{
        background-color: {THEME["card_bg"]};
    }}
    
    .footer {{
        text-align: center;
        opacity: 0.7;
        padding: 20px;
        transition: all 0.3s ease;
        color: {THEME["text"]};
        font-family: 'Space Grotesk', sans-serif;
    }}
    
    .footer:hover {{
        opacity: 1;
    }}

    /* Fix dropdown text color */
    div[data-baseweb="select"] div[class*="valueContainer"] {{
        color: {THEME["text_secondary"]} !important;
    }}
    
    div[data-baseweb="select"] div[class*="placeholder"] {{
        color: {THEME["text_secondary"]} !important;
    }}
    
    div[data-baseweb="select"] div[class*="singleValue"] {{
        color: {THEME["text_secondary"]} !important;
    }}
    
    /* Fix button text color */
    .stButton > button {{
        background-color: {THEME["button"]} !important;
        color: {THEME["text_secondary"]} !important;
        font-family: 'Space Grotesk', sans-serif !important;
        font-weight: 600 !important;
        font-size: 1.1rem !important;
        padding: 0.75rem 2rem !important;
        border: none !important;
        border-radius: 8px !important;
        transition: all 0.2s ease !important;
        box-shadow: 0 2px 5px rgba(0,0,0,0.1) !important;
        letter-spacing: 0.02em !important;
    }}
    
    .stButton > button:hover {{
        transform: translateY(-2px) !important;
        box-shadow: 0 4px 10px rgba(0,0,0,0.2) !important;
        background-color: {hex_to_rgba(THEME["button"], 0.9)} !important;
        color: {THEME["text_secondary"]} !important;
    }}
    
    /* Fix dropdown styling */
    div[data-baseweb="select"] {{
        background-color: {THEME["button"]} !important;
        border-color: {hex_to_rgba(THEME["button"], 0.5)} !important;
        border-radius: 8px !important;
    }}
    
    /* Fix dropdown options */
    div[data-baseweb="popover"] {{
        background-color: {THEME["text"]} !important;
        color: {THEME["text"]} !important;
    }}
    
    div[data-baseweb="popover"] div[role="option"] {{
        color: {THEME["text_secondary"]} !important;
    }}
    
    div[data-baseweb="popover"] div[role="option"]:hover {{
        background-color: {hex_to_rgba(THEME["button"], 0.7)} !important;
    }}
    
    /* Fix dropdown arrow color */
    div[data-baseweb="select"] svg {{
        color: {THEME["text_secondary"]} !important;
    }}
    
    /* Fix input label color */
    .stTextArea label {{
        color: {THEME["text"]} !important;
        font-weight: 500 !important;
    }}
    
    /* Fix selectbox label */
    .stSelectbox label {{
        color: {THEME["text"]} !important;
        font-weight: 500 !important;
    }}
    
    /* Ensure consistent black color */
    .stButton > button {{
        background-color: #000000 !important;
    }}
    
    div[data-baseweb="select"] {{
        background-color: #000000 !important;
    }}
    
    div[data-baseweb="popover"] {{
        background-color: #000000 !important;
    }}

    /* Style How to section */
    .usage-step {{
        background-color: {THEME["card_bg"]};
        border: 1px solid {hex_to_rgba(THEME["text"], 0.1)};
        border-radius: 10px;
        padding: 1rem;
        margin-bottom: 1rem;
        display: flex;
        align-items: center;
        transition: all 0.2s ease;
    }}

    .usage-step:hover {{
        transform: translateX(5px);
        border-color: {hex_to_rgba(THEME["button"], 0.3)};
        box-shadow: 0 2px 8px rgba(0,0,0,0.05);
    }}

    .step-number {{
        background-color: {THEME["button"]};
        color: {THEME["text_secondary"]};
        font-family: 'Space Grotesk', sans-serif;
        font-size: 1rem;
        font-weight: 600;
        min-width: 2.5rem;
        height: 2.5rem;
        border-radius: 30%;
        display: flex;
        align-items: center;
        justify-content: center;
        margin-right: 1.2rem;
    }}

    .usage-step div:last-child {{
        font-family: 'Space Grotesk', sans-serif;
        font-size: 1rem;
        color: {THEME["text"]}; 
        flex: 1;
        line-height: 1.4;
    }}

    /* Style the How to section header */
    [data-testid="stHeader"] {{
        background-color: transparent !important;
    }}

    .colored-header {{
        margin: 2rem 0 1.5rem 0;
    }}

    .colored-header h1 {{
        font-family: 'Space Grotesk', sans-serif;
        font-size: 2rem;
        font-weight: 700;
        color: {THEME["text"]};
        margin-bottom: 0.5rem;
    }}

    .colored-header p {{
        font-family: 'Space Grotesk', sans-serif;
        font-size: 1.1rem;
        color: {hex_to_rgba(THEME["text"], 0.8)};
    }}

    /* Fix plotly chart axis labels */
    .js-plotly-plot .plotly .g-gtitle {{
        color: {THEME["text"]} !important;
    }}
    
    .js-plotly-plot .plotly .xtitle, 
    .js-plotly-plot .plotly .ytitle {{
        fill: {THEME["text"]} !important;
        color: {THEME["text"]} !important;
    }}
    
    .js-plotly-plot .plotly .xtick text, 
    .js-plotly-plot .plotly .ytick text {{
        fill: {THEME["text"]} !important;
        color: {THEME["text"]} !important;
    }}
    
    /* Fix tab text color */
    button[data-baseweb="tab"] {{
        color: {THEME["text"]} !important;
    }}
    
    button[data-baseweb="tab"][aria-selected="true"] {{
        color: {THEME["primary"]} !important;
    }}
    
    /* Fix expander arrow color */
    div[data-testid="stExpander"] svg {{
        color: {THEME["text"]} !important;
    }}
    
    /* Ensure plotly modebar buttons are visible */
    .modebar-btn path {{
        fill: {THEME["text"]} !important;
    }}
    
    /* Fix any remaining white text on white background issues */
    .element-container, .stMarkdown, .stText {{
        color: {THEME["text"]} !important;
    }}
    
    /* Ensure text inputs have black text */
    .stTextInput input, .stTextArea textarea {{
        color: {THEME["text"]} !important;
    }}
    
    /* Fix plotly legend text */
    .js-plotly-plot .plotly .legend text {{
        fill: {THEME["text"]} !important;
        color: {THEME["text"]} !important;
    }}

    /* Fix success message color */
    .stSuccess {{
        color: {THEME["text"]} !important;
    }}
    
    /* Fix success icon color */
    .stSuccess svg {{
        fill: {THEME["text"]} !important;
    }}
    
    /* Ensure all alert messages have proper text color */
    div[data-baseweb="notification"] {{
        color: {THEME["text"]} !important;
    }}
    
    /* Fix input area text color */
    textarea {{
        color: {THEME["text"]} !important;
    }}
</style>
""", unsafe_allow_html=True)

# Custom CSS for metric labels - Add this near the top with the other CSS
st.markdown(f"""
<style>
/* Direct targeting of metric labels */
[data-testid="stMetricLabel"] {{
    color: {THEME["text"]} !important;
    font-weight: 500 !important;
}}

[data-testid="stMetricLabel"] span {{
    color: {THEME["text"]} !important;
    font-weight: 500 !important;
}}

/* Target the label content directly */
[data-testid="stMetricLabel"] div {{
    color: {THEME["text"]} !important;
}}

/* Target every element inside a metric label */
[data-testid="stMetricLabel"] * {{
    color: {THEME["text"]} !important;
}}

/* Style the value too */
[data-testid="stMetricValue"] {{
    color: {THEME["text"]} !important;
}}

/* Extremely specific selector to ensure it overrides everything */
div[data-testid="metric-container"] div[data-testid="stMetricLabel"] {{
    color: {THEME["text"]} !important;
}}
</style>
""", unsafe_allow_html=True)

# Load model at app start
@st.cache_resource
def load_classifier():
    try:
        if os.path.exists(ONNX_MODEL_PATH):
            classifier = OptimizedToxicityClassifier(onnx_path=ONNX_MODEL_PATH, device=DEVICE)
            st.session_state['model_type'] = 'Loaded'
            return classifier
        elif os.path.exists(PYTORCH_MODEL_DIR):
            classifier = OptimizedToxicityClassifier(pytorch_path=PYTORCH_MODEL_DIR, device=DEVICE)
            st.session_state['model_type'] = 'Loaded'
            return classifier
        else:
            st.error(f"โŒ No model found at {ONNX_MODEL_PATH} or {PYTORCH_MODEL_DIR}")
            return None
    except Exception as e:
        st.error(f"Error loading model: {str(e)}")
        import traceback
        st.error(traceback.format_exc())
        return None

def detect_language(text: str) -> str:
    """Detect language of input text"""
    try:
        lang, _ = langid.classify(text)
        return lang if lang in SUPPORTED_LANGUAGES else 'en'
    except:
        return 'en'

def predict_toxicity(text: str, selected_language: str = "Auto-detect") -> Dict:
    """Predict toxicity of input text"""
    if not text or not text.strip():
        return {
            "error": "Please enter some text to analyze.",
            "results": None
        }
        
    if not st.session_state.get('model_loaded', False):
        return {
            "error": "Model not loaded. Please check logs.",
            "results": None
        }
    
    # Add a spinner while processing
    with st.spinner("Analyzing text..."):
        # Record start time for inference metrics
        start_time = time.time()
        
        # Detect language if auto-detect is selected
        if selected_language == "Auto-detect":
            lang_detection_start = time.time()
            lang_code = detect_language(text)
            lang_detection_time = time.time() - lang_detection_start
            detected = True
        else:
            # Get language code from the display name without flag
            selected_name = selected_language.split(' ')[1] if len(selected_language.split(' ')) > 1 else selected_language
            lang_code = next((code for code, info in SUPPORTED_LANGUAGES.items() 
                            if info['name'] == selected_name), 'en')
            lang_detection_time = 0
            detected = False
        
        # Run prediction
        try:
            model_inference_start = time.time()
            results = classifier.predict([text], langs=[lang_code])[0]
            model_inference_time = time.time() - model_inference_start
            total_time = time.time() - start_time
            
            return {
                "results": results,
                "detected": detected,
                "lang_code": lang_code,
                "performance": {
                    "total_time": total_time,
                    "lang_detection_time": lang_detection_time,
                    "model_inference_time": model_inference_time
                }
            }
        except Exception as e:
            import traceback
            traceback.print_exc()
            return {
                "error": f"Error processing text: {str(e)}",
                "results": None
            }

# Function to set example text
def set_example(lang_code, example_type, example_index=0):
    st.session_state['use_example'] = True
    # Get the example based on the language, type and index
    example = LANGUAGE_EXAMPLES[lang_code][example_type][example_index]
    st.session_state['example_text'] = example
    st.session_state['detected_lang'] = lang_code
    st.session_state['example_info'] = {
        'type': example_type,
        'lang': lang_code,
        'index': example_index
    }

# Initialize session state for example selection if not present
if 'use_example' not in st.session_state:
    st.session_state['use_example'] = False
    st.session_state['example_text'] = ""
    st.session_state['detected_lang'] = "Auto-detect"
    st.session_state['example_info'] = None

# Sidebar content
with st.sidebar:
    st.markdown("<h1 class='main-title'>Multilingual Toxicity Analyzer</h1>", unsafe_allow_html=True)
    
    st.markdown("""
    #### This app analyzes text for different types of toxicity across multiple languages with high accuracy.
    """)
    
    # Create language cards with flags
    st.markdown("#### Supported Languages:")
    lang_cols = st.columns(2)
    
    for i, (code, info) in enumerate(SUPPORTED_LANGUAGES.items()):
        col_idx = i % 2
        with lang_cols[col_idx]:
            st.markdown(f"<div class='language-option'><span class='language-flag'>{info['flag']}</span> {info['name']}</div>", 
                      unsafe_allow_html=True)
    
    st.divider()
    
    # Language selection dropdown moved to sidebar
    st.markdown("### ๐ŸŒ Select Language")
    language_options = ["Auto-detect"] + [f"{info['flag']} {info['name']}" for code, info in SUPPORTED_LANGUAGES.items()]
    selected_language = st.selectbox(
        "Choose language or use auto-detect",
        language_options,
        index=0,
        key="selected_language",
        help="Choose a specific language or use auto-detection"
    )
    
    # Examples moved to sidebar
    st.markdown("### ๐Ÿ“ Try with examples:")
    
    # Create tabs for toxic and non-toxic examples
    example_tabs = st.tabs(["Toxic Examples", "Non-Toxic Examples"])
    
    # Order languages by putting the most common ones first
    ordered_langs = ['en', 'es', 'fr', 'pt', 'it', 'ru', 'tr']
    
    # Toxic examples tab
    with example_tabs[0]:
        st.markdown('<div class="examples-section">', unsafe_allow_html=True)
        for lang_code in ordered_langs:
            info = SUPPORTED_LANGUAGES[lang_code]
            with st.expander(f"{info['flag']} {info['name']} examples"):
                for i, example in enumerate(LANGUAGE_EXAMPLES[lang_code]['toxic']):
                    # Display a preview of the example
                    preview = example[:40] + "..." if len(example) > 40 else example
                    button_key = f"toxic_{lang_code}_{i}"
                    button_help = f"Try with this {info['name']} toxic example"
                    
                    # We can't directly apply CSS classes to Streamlit buttons, but we can wrap them
                    if st.button(f"Example {i+1}: {preview}", 
                            key=button_key,
                            use_container_width=True,
                            help=button_help):
                        set_example(lang_code, 'toxic', i)
        st.markdown('</div>', unsafe_allow_html=True)
    
    # Non-toxic examples tab
    with example_tabs[1]:
        st.markdown('<div class="examples-section">', unsafe_allow_html=True)
        for lang_code in ordered_langs:
            info = SUPPORTED_LANGUAGES[lang_code]
            with st.expander(f"{info['flag']} {info['name']} examples"):
                for i, example in enumerate(LANGUAGE_EXAMPLES[lang_code]['non_toxic']):
                    # Display a preview of the example
                    preview = example[:40] + "..." if len(example) > 40 else example
                    button_key = f"non_toxic_{lang_code}_{i}"
                    button_help = f"Try with this {info['name']} non-toxic example"
                    
                    if st.button(f"Example {i+1}: {preview}", 
                            key=button_key,
                            use_container_width=True,
                            help=button_help):
                        set_example(lang_code, 'non_toxic', i)
        st.markdown('</div>', unsafe_allow_html=True)
    
    st.divider()
    
    # Model and Hardware information in the sidebar with improved layout
    st.markdown("### ๐Ÿ’ป System Information", unsafe_allow_html=True)
    
    # Update system resources info
    current_sys_info = update_system_resources()
    
    # GPU section
    if DEVICE == "cuda":
        st.markdown("""
        <div class="hardware-info">
            <div class="hardware-title"><span class="icon">๐ŸŽฎ</span> GPU</div>
            <div class="hardware-resource">
        """, unsafe_allow_html=True)
        
        gpu_name = GPU_INFO.split(" (")[0]
        st.markdown(f"<div class='hardware-stat'><span class='label'>Model:</span> <span class='value'>{gpu_name}</span></div>", unsafe_allow_html=True)
        
        cuda_version = "Unknown"
        if "CUDA" in GPU_INFO:
            cuda_version = GPU_INFO.split("CUDA ")[1].split(",")[0]
        st.markdown(f"<div class='hardware-stat'><span class='label'>CUDA:</span> <span class='value'>{cuda_version}</span></div>", unsafe_allow_html=True)
        
        current_gpu_memory = update_gpu_info()
        st.markdown(f"<div class='hardware-stat'><span class='label'>Memory:</span> <span class='value'>{current_gpu_memory}</span></div>", unsafe_allow_html=True)
        
        st.markdown("</div></div>", unsafe_allow_html=True)
    
    # CPU section
    st.markdown("""
    <div class="hardware-info">
        <div class="hardware-title"><span class="icon">โš™๏ธ</span> CPU</div>
        <div class="hardware-resource">
    """, unsafe_allow_html=True)
    
    cpu_info = current_sys_info["cpu"]
    st.markdown(f"<div class='hardware-stat'><span class='label'>Model:</span> <span class='value'>{cpu_info['name']}</span></div>", unsafe_allow_html=True)
    st.markdown(f"<div class='hardware-stat'><span class='label'>Cores:</span> <span class='value'>{cpu_info['cores']}</span></div>", unsafe_allow_html=True)
    st.markdown(f"<div class='hardware-stat'><span class='label'>Frequency:</span> <span class='value'>{cpu_info['freq']}</span></div>", unsafe_allow_html=True)
    st.markdown(f"<div class='hardware-stat'><span class='label'>Usage:</span> <span class='value'>{cpu_info['usage']}</span></div>", unsafe_allow_html=True)
    
    st.markdown("</div></div>", unsafe_allow_html=True)
    
    # RAM section
    st.markdown("""
    <div class="hardware-info">
        <div class="hardware-title"><span class="icon">๐Ÿง </span> RAM</div>
        <div class="hardware-resource">
    """, unsafe_allow_html=True)
    
    ram_info = current_sys_info["ram"]
    st.markdown(f"<div class='hardware-stat'><span class='label'>Total:</span> <span class='value'>{ram_info['total']}</span></div>", unsafe_allow_html=True)
    st.markdown(f"<div class='hardware-stat'><span class='label'>Used:</span> <span class='value'>{ram_info['used']}</span></div>", unsafe_allow_html=True)
    st.markdown(f"<div class='hardware-stat'><span class='label'>Usage:</span> <span class='value'>{ram_info['percent']}</span></div>", unsafe_allow_html=True)
    
    st.markdown("</div></div>", unsafe_allow_html=True)
    
    st.divider()
    
    # Toxicity Thresholds - Moved from results section to sidebar
    st.markdown("### โš™๏ธ Toxicity Thresholds")
    st.markdown("""
    <div class='threshold-bg'>
    The model uses language-specific thresholds to determine if a text is toxic:

    - **Toxic**: 60%
    - **Severe Toxic**: 54%
    - **Obscene**: 60%
    - **Threat**: 48%
    - **Insult**: 60%
    - **Identity Hate**: 50%

    These increased thresholds reduce false positives but may miss borderline toxic content.
    </div>
    """, unsafe_allow_html=True)

# Display model loading status
if 'model_loaded' not in st.session_state:
    with st.spinner("๐Ÿ”„ Loading model..."):
        classifier = load_classifier()
        if classifier:
            st.session_state['model_loaded'] = True
            st.success(f"โœ… Model loaded successfully on {GPU_INFO}")
        else:
            st.session_state['model_loaded'] = False
            st.error("โŒ Failed to load model. Please check logs.")
else:
    # Model already loaded, just get it from cache
    classifier = load_classifier()

# Main app
st.markdown("""
<h1 class='main-title'> 
    <svg xmlns="http://www.w3.org/2000/svg" style="padding-bottom: 10px;" width="45" height="45" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="lucide lucide-shield-plus-icon lucide-shield-plus">
        <path d="M20 13c0 5-3.5 7.5-7.66 8.95a1 1 0 0 1-.67-.01C7.5 20.5 4 18 4 13V6a1 1 0 0 1 1-1c2 0 4.5-1.2 6.24-2.72a1.17 1.17 0 0 1 1.52 0C14.51 3.81 17 5 19 5a1 1 0 0 1 1 1z"/>
        <path d="M9 12h6"/>
        <path d="M12 9v6"/>
    </svg> 
    Multilingual Toxicity Analyzer
</h1>
""", unsafe_allow_html=True)
st.markdown("""
<p class='subtitle'>Detect toxic content in multiple languages with state-of-the-art accuracy</p>
""", unsafe_allow_html=True)

# Text input area with interactive styling
with stylable_container(
    key="text_input_container",
    css_styles=f"""
        {{
            border-radius: 10px;
            overflow: hidden;
            transition: all 0.3s ease;
            box-shadow: 0 2px 8px rgba(0,0,0,0.15);
            background-color: {THEME["card_bg"]};
            padding: 10px;
            margin-bottom: 15px;
        }}

        textarea {{
            caret-color: black !important;
            color: {THEME["text"]} !important;
        }}

        /* Ensure the text input cursor is visible */
        .stTextArea textarea {{
            caret-color: black !important;
        }}
    """
):
    # Get the current example text if it exists
    current_example = st.session_state.get('example_text', '')
    
    # Set the text input value, allowing for modifications
    text_input = st.text_area(
        "Enter text to analyze",
        height=80,
        value=current_example if st.session_state.get('use_example', False) else st.session_state.get('text_input', ''),
        key="text_input",
        help="Enter text in any supported language to analyze for toxicity"
    )
    
    # Check if the text has been modified from the example
    if st.session_state.get('use_example', False) and text_input != current_example:
        # Text was modified, clear example state
        st.session_state['use_example'] = False
        st.session_state['example_text'] = ""
        st.session_state['example_info'] = None

# Analyze button with improved styling in a more compact layout
col1, col2, col3 = st.columns([1, 2, 1])
with col2:
    analyze_button = st.button(
        "Analyze Text", 
        type="primary", 
        use_container_width=True,
        help="Click to analyze the entered text for toxicity"
    )

# Process when button is clicked or text is submitted
if analyze_button or (text_input and 'last_analyzed' not in st.session_state or st.session_state.get('last_analyzed') != text_input):
    if text_input:
        st.session_state['last_analyzed'] = text_input
        
        # Get system resource info before prediction
        pre_prediction_resources = update_system_resources()
        
        # Make prediction
        prediction = predict_toxicity(text_input, selected_language)
        
        # Update resource usage after prediction
        post_prediction_resources = update_system_resources()
        
        # Calculate resource usage delta
        resource_delta = {
            "cpu_usage": float(post_prediction_resources["cpu"]["usage"].rstrip("%")) - float(pre_prediction_resources["cpu"]["usage"].rstrip("%")),
            "ram_usage": float(post_prediction_resources["ram"]["percent"].rstrip("%")) - float(pre_prediction_resources["ram"]["percent"].rstrip("%"))
        }
        
        # Update GPU memory info after prediction
        if DEVICE == "cuda":
            new_memory_info = update_gpu_info()
            # Note: Ideally we would update the displayed memory usage here,
            # but Streamlit doesn't support dynamic updates without a rerun,
            # so we'll just include memory info in our metrics
        
        # Set analysis status flags but remove celebration effect code
        st.session_state['is_analysis_complete'] = True
        st.session_state['analysis_has_error'] = "error" in prediction and prediction["error"]
        
        if "error" in prediction and prediction["error"]:
            st.error(prediction["error"])
        elif prediction["results"]:
            # Remove celebration effect call
            # celebration_effect()
            
            results = prediction["results"]
            performance = prediction.get("performance", {})
            
            # Overall toxicity result
            is_toxic = results["is_toxic"]
            result_color = THEME["toxic"] if is_toxic else THEME["non_toxic"]
            result_text = "TOXIC" if is_toxic else "NON-TOXIC"
            
            # Language info
            lang_code = prediction["lang_code"]
            lang_info = SUPPORTED_LANGUAGES.get(lang_code, {"name": lang_code, "flag": "๐ŸŒ"})
            
            # Count toxic categories
            toxic_count = len(results["toxic_categories"]) if is_toxic else 0
            
            # Create data for visualization but don't display the table
            categories = []
            probabilities = []
            statuses = []
            
            # Use the same thresholds that are used in the inference model
            category_thresholds = {
                'toxic': 0.60,
                'severe_toxic': 0.54,
                'obscene': 0.60,
                'threat': 0.48,
                'insult': 0.60,
                'identity_hate': 0.50
            }
            
            for label, prob in results["probabilities"].items():
                categories.append(label.replace('_', ' ').title())
                probabilities.append(round(prob * 100, 1))
                threshold = category_thresholds.get(label, 0.5) * 100
                statuses.append("DETECTED" if prob * 100 >= threshold else "Not Detected")
            
            # Sort by probability for the chart
            chart_data = sorted(zip(categories, probabilities, statuses), key=lambda x: x[1], reverse=True)
            chart_cats, chart_probs, chart_statuses = zip(*chart_data)
            
            # Two column layout for results
            col1, col2 = st.columns([3, 2])
            
            with col1:
                # Card with overall result and detected categories
                with stylable_container(
                    key="result_card",
                    css_styles=f"""
                        {{
                            border-radius: 10px;
                            padding: 10px 15px;
                            background-color: {THEME["card_bg"]};
                            border-left: 5px solid {result_color};
                            margin-bottom: 10px;
                            box-shadow: 0 4px 12px rgba(0,0,0,0.1);
                            overflow: hidden;
                        }}
                    """
                ):
                    # Overall result with abbreviated display
                    st.markdown(f"""
                    <div style="display: flex; align-items: center; margin-bottom: 5px;">
                        <h3 style="margin: 0; margin-right: 10px;">Analysis Result:</h3>
                        <span style='background-color: {hex_to_rgba(result_color, 0.13)}; color: {result_color}; font-family: "Space Grotesk", sans-serif; font-size: 1.1rem; font-weight: 700; padding: 2px 10px; border-radius: 6px;'>{result_text}</span>
                    </div>
                    <div style="margin: 5px 0; font-size: 0.95rem;">
                        <b>Language:</b> {lang_info['flag']} {lang_info['name']} {'(detected)' if prediction["detected"] else ''}
                    </div>
                    <div style="margin: 5px 0 12px 0; font-size: 0.95rem;">
                        <b>Toxic Categories:</b> {", ".join([f'<span class="toxic-category" style="padding: 2px 6px; font-size: 0.8rem; display: inline-block;">{category.replace("_", " ").title()}</span>' for category in results["toxic_categories"]]) if is_toxic and toxic_count > 0 else '<span style="color: #666; font-size: 0.9rem;">None</span>'}
                    </div>
                    """, unsafe_allow_html=True)
                    
                    # Add toxicity probability graph inside the result card
                    st.markdown("<h4 style='overflow: hidden; margin-top: 4px; margin-bottom: 4px;'>Toxicity Probabilities:</h4>", unsafe_allow_html=True)
                    
                    # Create a horizontal bar chart with Plotly
                    fig = go.Figure()
                    
                    # Add bars with different colors based on toxicity
                    for i, (cat, prob, status) in enumerate(zip(chart_cats, chart_probs, chart_statuses)):
                        color = THEME["toxic"] if status == "DETECTED" else THEME["non_toxic"]
                        border_color = hex_to_rgba(color, 0.85)  # Using rgba for border
                        
                        fig.add_trace(go.Bar(
                            y=[cat],
                            x=[prob],
                            orientation='h',
                            name=cat,
                            marker=dict(
                                color=color,
                                line=dict(
                                    color=border_color,
                                    width=2
                                )
                            ),
                            text=[f"{prob}%"],
                            textposition='outside',
                            textfont=dict(size=16, weight='bold'),  # Much larger, bold text
                            hoverinfo='text',
                            hovertext=[f"{cat}: {prob}%"]
                        ))
                    
                    # Update layout
                    fig.update_layout(
                        title=None,
                        xaxis_title="Probability (%)",
                        yaxis_title=None,  # Remove y-axis title to save space
                        height=340,  # Significantly increased height
                        margin=dict(l=10, r=40, t=20, b=40),  # More margin space for labels
                        xaxis=dict(
                            range=[0, 115],  # Extended for outside labels
                            gridcolor=hex_to_rgba(THEME["text"], 0.15),
                            zerolinecolor=hex_to_rgba(THEME["text"], 0.3),
                            color=THEME["text"],
                            tickfont=dict(size=15),  # Larger tick font
                            title_font=dict(size=16, family="Space Grotesk, sans-serif")  # Larger axis title
                        ),
                        yaxis=dict(
                            gridcolor=hex_to_rgba(THEME["text"], 0.15),
                            color=THEME["text"],
                            tickfont=dict(size=15, family="Space Grotesk, sans-serif", weight='bold'),  # Larger, bold category names
                            automargin=True  # Auto-adjust margin to fit category names
                        ),
                        bargap=0.3,  # More space between bars
                        paper_bgcolor='rgba(0,0,0,0)',
                        plot_bgcolor='rgba(0,0,0,0)',
                        font=dict(
                            family="Space Grotesk, sans-serif",
                            color=THEME["text"],
                            size=15  # Larger base font size
                        ),
                        showlegend=False
                    )
                    
                    # Grid lines
                    fig.update_xaxes(
                        showgrid=True, 
                        gridwidth=1.5,  # Slightly wider grid lines
                        gridcolor=hex_to_rgba(THEME["text"], 0.15),
                        dtick=20
                    )
                    
                    # Display the plot
                    st.plotly_chart(fig, use_container_width=True, config={
                        'displayModeBar': False,
                        'displaylogo': False
                    })
            
            with col2:
                # Performance metrics card
                if performance:
                    with stylable_container(
                        key="performance_metrics_card",
                        css_styles=f"""
                            {{
                                border-radius: 10px;
                                padding: 20px;
                                background-color: {THEME["card_bg"]};
                                border-left: 3px solid {THEME["primary"]};
                                height: 100%;
                                box-shadow: 0 4px 12px rgba(0,0,0,0.1);
                            }}
                        """
                    ):
                        st.markdown("<h3 style='margin-top: 0;'>Performance Metrics</h3>", unsafe_allow_html=True)
                        total_time = performance.get("total_time", 0)
                        inference_time = performance.get("model_inference_time", 0)
                        lang_detection_time = performance.get("lang_detection_time", 0)
                        
                        # Create tabs for different types of metrics
                        perf_tab1, perf_tab2 = st.tabs(["Time Metrics", "Resource Usage"])
                        
                        with perf_tab1:
                            time_cols = st.columns(1)
                            with time_cols[0]:
                                # Use custom HTML metrics instead of st.metric
                                total_time_val = f"{total_time:.3f}s"
                                inference_time_val = f"{inference_time:.3f}s"
                                lang_detection_time_val = f"{lang_detection_time:.3f}s"
                                
                                st.markdown(f"""
                                <div style="background-color: white; border-left: 3px solid {THEME["primary"]}; border: 1px solid {hex_to_rgba(THEME["primary"], 0.2)}; border-radius: 10px; padding: 10px; margin-bottom: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.05);">
                                    <div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 500; font-size: 0.85rem; margin-bottom: 3px;">
                                        Total Time
                                    </div>
                                    <div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 600; font-size: 1.2rem;">
                                        {total_time_val}
                                    </div>
                                </div>
                                
                                <div style="background-color: white; border-left: 3px solid {THEME["primary"]}; border: 1px solid {hex_to_rgba(THEME["primary"], 0.2)}; border-radius: 10px; padding: 10px; margin-bottom: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.05);">
                                    <div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 500; font-size: 0.85rem; margin-bottom: 3px;">
                                        Model Inference
                                    </div>
                                    <div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 600; font-size: 1.2rem;">
                                        {inference_time_val}
                                    </div>
                                </div>
                                
                                <div style="background-color: white; border-left: 3px solid {THEME["primary"]}; border: 1px solid {hex_to_rgba(THEME["primary"], 0.2)}; border-radius: 10px; padding: 10px; margin-bottom: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.05);">
                                    <div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 500; font-size: 0.85rem; margin-bottom: 3px;">
                                        Language Detection
                                    </div>
                                    <div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 600; font-size: 1.2rem;">
                                        {lang_detection_time_val}
                                    </div>
                                </div>
                                """, unsafe_allow_html=True)
                        
                        with perf_tab2:
                            # Display system resource metrics with custom HTML
                            current_sys_info = update_system_resources()
                            
                            # Format delta: add + sign for positive values
                            cpu_usage = current_sys_info["cpu"]["usage"]
                            cpu_delta = f"{resource_delta['cpu_usage']:+.1f}%" if abs(resource_delta['cpu_usage']) > 0.1 else None
                            cpu_delta_display = f" ({cpu_delta})" if cpu_delta else ""
                            
                            ram_usage = current_sys_info["ram"]["percent"]
                            ram_delta = f"{resource_delta['ram_usage']:+.1f}%" if abs(resource_delta['ram_usage']) > 0.1 else None
                            ram_delta_display = f" ({ram_delta})" if ram_delta else ""
                            
                            if DEVICE == "cuda":
                                gpu_memory = update_gpu_info()
                                memory_display = f"GPU Memory: {gpu_memory}"
                            else:
                                memory_display = f"System RAM: {current_sys_info['ram']['used']} / {current_sys_info['ram']['total']}"
                            
                            st.markdown(f"""
                            <div style="background-color: white; border-left: 3px solid {THEME["primary"]}; border: 1px solid {hex_to_rgba(THEME["primary"], 0.2)}; border-radius: 10px; padding: 10px; margin-bottom: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.05);">
                                <div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 500; font-size: 0.85rem; margin-bottom: 3px;">
                                    CPU Usage
                                </div>
                                <div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 600; font-size: 1.2rem;">
                                    {cpu_usage}<span style="font-size: 0.9rem; color: {THEME["primary"]};">{cpu_delta_display}</span>
                                </div>
                            </div>
                            
                            <div style="background-color: white; border-left: 3px solid {THEME["primary"]}; border: 1px solid {hex_to_rgba(THEME["primary"], 0.2)}; border-radius: 10px; padding: 10px; margin-bottom: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.05);">
                                <div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 500; font-size: 0.85rem; margin-bottom: 3px;">
                                    RAM Usage
                                </div>
                                <div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 600; font-size: 1.2rem;">
                                    {ram_usage}<span style="font-size: 0.9rem; color: {THEME["primary"]};">{ram_delta_display}</span>
                                </div>
                            </div>
                            
                            <div style="background-color: white; border-left: 3px solid {THEME["primary"]}; border: 1px solid {hex_to_rgba(THEME["primary"], 0.2)}; border-radius: 10px; padding: 10px; margin-bottom: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.05);">
                                <div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 500; font-size: 0.85rem; margin-bottom: 3px;">
                                    Memory
                                </div>
                                <div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 600; font-size: 1.2rem;">
                                    {memory_display}
                                </div>
                            </div>
                            """, unsafe_allow_html=True)
    else:
        pass  # Remove the info message

# Bottom section with improved styling for usage guide
st.divider()
colored_header(
    label="How to use this AI Model",
    description="Follow these steps to analyze text for toxicity",
    color_name="blue-70"
)

# Steps with more engaging design
st.markdown("""
<div class='usage-step'>
    <div class='step-number'>1</div>
    <div>Enter text in the input box above. You can type directly or paste from another source.</div>
</div>

<div class='usage-step'>
    <div class='step-number'>2</div>
    <div>Select a specific language from the sidebar or use the auto-detect feature if you're unsure.</div>
</div>

<div class='usage-step'>
    <div class='step-number'>3</div>
    <div>Click "Analyze Text" to get detailed toxicity analysis results.</div>
</div>

<div class='usage-step'>
    <div class='step-number'>4</div>
    <div>Examine the breakdown of toxicity categories, probabilities, and visualization.</div>
</div>

<div class='usage-step'>
    <div class='step-number'>5</div>
    <div>Try different examples from the sidebar to see how the model performs with various languages.</div>
</div>
""", unsafe_allow_html=True)

# Adding footer with credits and improved styling
st.markdown("""
<div class='footer'>
    <div>Powered by XLM-RoBERTa | Streamlit UI</div>
    <div style='font-size: 0.9rem; margin-top: 5px;'>Made with โค๏ธ by Deeptanshu, Nauman, Sara and Soham</div>
</div>
""", unsafe_allow_html=True)