File size: 64,144 Bytes
d187b57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 |
# Fix for torch.classes watchdog errors
import sys
class ModuleProtector:
def __init__(self, module_name):
self.module_name = module_name
self.original_module = sys.modules.get(module_name)
def __enter__(self):
if self.module_name in sys.modules:
self.original_module = sys.modules[self.module_name]
sys.modules[self.module_name] = None
def __exit__(self, *args):
if self.original_module is not None:
sys.modules[self.module_name] = self.original_module
# Temporarily remove torch.classes from sys.modules to prevent Streamlit's file watcher from accessing it
with ModuleProtector('torch.classes'):
import streamlit as st
# Set page configuration - MUST BE THE FIRST STREAMLIT COMMAND
st.set_page_config(
page_title="Multilingual Toxicity Analyzer",
page_icon="",
layout="wide",
initial_sidebar_state="expanded"
)
# Now import all other dependencies
import torch
import os
import plotly.graph_objects as go
import pandas as pd
from model.inference_optimized import OptimizedToxicityClassifier
import langid
from typing import List, Dict
import time
import psutil
import platform
try:
import cpuinfo
except ImportError:
cpuinfo = None
from streamlit_extras.colored_header import colored_header
from streamlit_extras.add_vertical_space import add_vertical_space
from streamlit_extras.stylable_container import stylable_container
from streamlit_extras.card import card
from streamlit_extras.metric_cards import style_metric_cards
# Configure paths
ONNX_MODEL_PATH = os.environ.get("ONNX_MODEL_PATH", "weights/toxic_classifier.onnx")
PYTORCH_MODEL_DIR = os.environ.get("PYTORCH_MODEL_DIR", "weights/toxic_classifier_xlm-roberta-large")
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Get GPU info if available
def get_gpu_info():
if DEVICE == "cuda":
try:
gpu_name = torch.cuda.get_device_name(0)
gpu_memory_total = torch.cuda.get_device_properties(0).total_memory / 1024**3 # Convert to GB
gpu_memory_allocated = torch.cuda.memory_allocated(0) / 1024**3 # Convert to GB
cuda_version = torch.version.cuda
memory_info = f"{gpu_memory_allocated:.1f}/{gpu_memory_total:.1f} GB"
return f"{gpu_name} (CUDA {cuda_version}, Memory: {memory_info})"
except Exception as e:
return "CUDA device"
return "CPU"
# Get CPU information
def get_cpu_info():
try:
cpu_percent = psutil.cpu_percent(interval=0.1)
cpu_count = psutil.cpu_count(logical=True)
cpu_freq = psutil.cpu_freq()
if cpu_freq:
freq_info = f"{cpu_freq.current/1000:.2f} GHz"
else:
freq_info = "Unknown"
# Try multiple methods to get CPU model name
cpu_model = None
# Method 1: Try reading from /proc/cpuinfo directly
try:
with open('/proc/cpuinfo', 'r') as f:
for line in f:
if 'model name' in line:
cpu_model = line.split(':', 1)[1].strip()
break
except:
pass
# Method 2: If Method 1 fails, try using platform.processor()
if not cpu_model:
cpu_model = platform.processor()
# Method 3: If still no result, try using platform.machine()
if not cpu_model or cpu_model == '':
cpu_model = platform.machine()
# Method 4: Final fallback to using psutil
if not cpu_model or cpu_model == '':
try:
import cpuinfo
cpu_model = cpuinfo.get_cpu_info()['brand_raw']
except:
pass
# Clean up the model name
if cpu_model:
# Remove common unnecessary parts
replacements = [
'(R)', '(TM)', '(r)', '(tm)', 'CPU', '@', ' ', 'Processor'
]
for r in replacements:
cpu_model = cpu_model.replace(r, ' ')
# Clean up extra spaces
cpu_model = ' '.join(cpu_model.split())
# Limit length
if len(cpu_model) > 40:
cpu_model = cpu_model[:37] + "..."
else:
cpu_model = "Unknown CPU"
return {
"name": cpu_model,
"cores": cpu_count,
"freq": freq_info,
"usage": f"{cpu_percent:.1f}%"
}
except Exception as e:
return {
"name": "CPU",
"cores": "Unknown",
"freq": "Unknown",
"usage": "Unknown"
}
# Get RAM information
def get_ram_info():
try:
ram = psutil.virtual_memory()
ram_total = ram.total / (1024**3) # Convert to GB
ram_used = ram.used / (1024**3) # Convert to GB
ram_percent = ram.percent
return {
"total": f"{ram_total:.1f} GB",
"used": f"{ram_used:.1f} GB",
"percent": f"{ram_percent:.1f}%"
}
except Exception as e:
return {
"total": "Unknown",
"used": "Unknown",
"percent": "Unknown"
}
# Update system resource information
def update_system_resources():
cpu_info = get_cpu_info()
ram_info = get_ram_info()
return {
"cpu": cpu_info,
"ram": ram_info
}
# Initialize system information
GPU_INFO = get_gpu_info()
SYSTEM_INFO = update_system_resources()
# Add a function to update GPU memory info in real-time
def update_gpu_info():
if DEVICE == "cuda":
try:
gpu_memory_allocated = torch.cuda.memory_allocated(0) / 1024**3 # Convert to GB
gpu_memory_total = torch.cuda.get_device_properties(0).total_memory / 1024**3 # Convert to GB
return f"{gpu_memory_allocated:.1f}/{gpu_memory_total:.1f} GB"
except:
return "N/A"
return "N/A"
# Helper function to convert hex to rgba
def hex_to_rgba(hex_color, alpha=1.0):
hex_color = hex_color.lstrip('#')
r = int(hex_color[0:2], 16)
g = int(hex_color[2:4], 16)
b = int(hex_color[4:6], 16)
return f'rgba({r}, {g}, {b}, {alpha})'
# Supported languages with emoji flags
SUPPORTED_LANGUAGES = {
'en': {'name': 'English', 'flag': '๐บ๐ธ'},
'ru': {'name': 'Russian', 'flag': '๐ท๐บ'},
'tr': {'name': 'Turkish', 'flag': '๐น๐ท'},
'es': {'name': 'Spanish', 'flag': '๐ช๐ธ'},
'fr': {'name': 'French', 'flag': '๐ซ๐ท'},
'it': {'name': 'Italian', 'flag': '๐ฎ๐น'},
'pt': {'name': 'Portuguese', 'flag': '๐ต๐น'}
}
# Language examples - expanded with multiple examples per language, categorized as toxic or non-toxic
LANGUAGE_EXAMPLES = {
'en': {
'toxic': [
"You are such an idiot, nobody likes your stupid content.",
"Shut up you worthless piece of garbage. Everyone hates you.",
"This is the most pathetic thing I've ever seen. Only losers would think this is good.",
"Just kill yourself already, the world would be better without you."
],
'non_toxic': [
"I disagree with your opinion, but I appreciate your perspective.",
"This content could use some improvement, but I see the effort you put into it.",
"While I don't personally enjoy this type of content, others might find it valuable.",
"Thank you for sharing your thoughts on this complex topic."
]
},
'ru': {
'toxic': [
"ะขั ะฟะพะปะฝัะน ะฟัะธะดััะพะบ, ัะฒะพะน ะบะพะฝัะตะฝั ะฝะธะบะพะผั ะฝะต ะฝัะฐะฒะธััั.",
"ะะฐัะบะฝะธัั, ะฑะตัะฟะพะปะตะทะฝัะน ะบััะพะบ ะผััะพัะฐ. ะัะต ัะตะฑั ะฝะตะฝะฐะฒะธะดัั.",
"ะญัะพ ัะฐะผะฐั ะถะฐะปะบะฐั ะฒะตัั, ะบะพัะพััั ั ะบะพะณะดะฐ-ะปะธะฑะพ ะฒะธะดะตะป. ะขะพะปัะบะพ ะฝะตัะดะฐัะฝะธะบะธ ะดัะผะฐัั, ััะพ ััะพ ั
ะพัะพัะพ.",
"ะะพัะตะผั ะฑั ัะตะฑะต ะฟัะพััะพ ะฝะต ะธััะตะทะฝััั ะฝะฐั
ัะตะฝ? ะะธะบัะพ ะฝะต ะฑัะดะตั ัะบััะฐัั ะฟะพ ัะตะฑะต."
],
'non_toxic': [
"ะฏ ะฝะต ัะพะณะปะฐัะตะฝ ั ะฒะฐัะธะผ ะผะฝะตะฝะธะตะผ, ะฝะพ ัะฒะฐะถะฐั ะฒะฐัั ัะพัะบั ะทัะตะฝะธั.",
"ะญัะพั ะบะพะฝัะตะฝั ะผะพะถะฝะพ ัะปัััะธัั, ะฝะพ ั ะฒะธะถั, ัะบะพะปัะบะพ ััะธะปะธะน ะฒั ะฒ ะฝะตะณะพ ะฒะปะพะถะธะปะธ.",
"ะฅะพัั ะผะฝะต ะปะธัะฝะพ ะฝะต ะฝัะฐะฒะธััั ัะฐะบะพะน ะบะพะฝัะตะฝั, ะดััะณะธะต ะผะพะณัั ะฝะฐะนัะธ ะตะณะพ ะฟะพะปะตะทะฝัะผ.",
"ะกะฟะฐัะธะฑะพ, ััะพ ะฟะพะดะตะปะธะปะธัั ัะฒะพะธะผะธ ะผััะปัะผะธ ะฝะฐ ััั ัะปะพะถะฝัั ัะตะผั."
]
},
'tr': {
'toxic': [
"Sen tam bir aptalsฤฑn, kimse senin aptalca iรงeriฤini beฤenmiyor.",
"Kapa รงeneni deฤersiz รงรถp parรงasฤฑ. Herkes senden nefret ediyor.",
"Bu gรถrdรผฤรผm en acฤฑklฤฑ ลey. Sadece lanet olasฤฑ kaybedenler bunun iyi olduฤunu dรผลรผnรผr.",
"Dรผnya sensiz daha iyi olurdu, kaybol git."
],
'non_toxic': [
"Fikrinize katฤฑlmฤฑyorum ama bakฤฑล aรงฤฑnฤฑzฤฑ takdir ediyorum.",
"Bu iรงerik biraz geliลtirilebilir, ancak gรถsterdiฤiniz รงabayฤฑ gรถrรผyorum.",
"ลahsen bu tรผr iรงerikten hoลlanmasam da, baลkalarฤฑ bunu deฤerli bulabilir.",
"Bu karmaลฤฑk konu hakkฤฑndaki dรผลรผncelerinizi paylaลtฤฑฤฤฑnฤฑz iรงin teลekkรผr ederim."
]
},
'es': {
'toxic': [
"Eres un completo idiota y nadie te quiere.",
"Cรกllate, pedazo de basura inรบtil. Todos te odian.",
"Esto es lo mรกs patรฉtico que he visto nunca. Solo los perdedores pensarรญan que esto es bueno.",
"El mundo estarรญa mejor sin ti, deberรญas desaparecer, joder."
],
'non_toxic': [
"No estoy de acuerdo con tu opiniรณn, pero aprecio tu perspectiva.",
"Este contenido podrรญa mejorarse, pero veo el esfuerzo que has puesto en รฉl.",
"Aunque personalmente no disfruto este tipo de contenido, otros podrรญan encontrarlo valioso.",
"Gracias por compartir tus pensamientos sobre este tema tan complejo."
]
},
'fr': {
'toxic': [
"Tu es tellement stupide, personne n'aime ton contenu minable.",
"Ferme-la, espรจce de dรฉchet inutile. Tout le monde te dรฉteste.",
"C'est la chose la plus pathรฉtique que j'ai jamais vue. Seuls les loosers penseraient que c'est bien.",
"Le monde serait meilleur sans toi, connard, va-t'en."
],
'non_toxic': [
"Je ne suis pas d'accord avec ton opinion, mais j'apprรฉcie ta perspective.",
"Ce contenu pourrait รชtre amรฉliorรฉ, mais je vois l'effort que tu y as mis.",
"Bien que personnellement je n'apprรฉcie pas ce type de contenu, d'autres pourraient le trouver prรฉcieux.",
"Merci d'avoir partagรฉ tes rรฉflexions sur ce sujet complexe."
]
},
'it': {
'toxic': [
"Sei un tale idiota, a nessuno piace il tuo contenuto stupido.",
"Chiudi quella bocca, pezzo di spazzatura inutile. Tutti ti odiano.",
"Questa รจ la cosa piรน patetica che abbia mai visto. Solo i perdenti penserebbero che sia buona.",
"Il mondo sarebbe migliore senza di te, sparisci."
],
'non_toxic': [
"Non sono d'accordo con la tua opinione, ma apprezzo la tua prospettiva.",
"Questo contenuto potrebbe essere migliorato, ma vedo lo sforzo che ci hai messo.",
"Anche se personalmente non apprezzo questo tipo di contenuto, altri potrebbero trovarlo utile.",
"Grazie per aver condiviso i tuoi pensieri su questo argomento complesso."
]
},
'pt': {
'toxic': [
"Vocรช รฉ um idiota completo, ninguรฉm gosta do seu conteรบdo estรบpido.",
"Cale a boca, seu pedaรงo de lixo inรบtil. Todos te odeiam.",
"Isso รฉ a coisa mais patรฉtica que eu jรก vi. Sรณ perdedores pensariam que isso รฉ bom.",
"O mundo seria melhor sem vocรช, desapareรงa."
],
'non_toxic': [
"Eu discordo da sua opiniรฃo, mas aprecio sua perspectiva.",
"Este conteรบdo poderia ser melhorado, mas vejo o esforรงo que vocรช colocou nele.",
"Embora eu pessoalmente nรฃo goste deste tipo de conteรบdo, outros podem achรก-lo valioso.",
"Obrigado por compartilhar seus pensamentos sobre este tema complexo."
]
}
}
# Theme colors - Light theme with black text
THEME = {
"primary": "#2D3142",
"background": "#FFFFFF",
"surface": "#FFFFFF",
"text": "#000000", # Changed to pure black for maximum contrast
"text_secondary": "#FFFFFF", # For text that needs to be white
"button": "#000000", # Dark black for buttons
"toxic": "#E53935", # Darker red for better contrast
"non_toxic": "#2E7D32", # Darker green for better contrast
"warning": "#F57C00", # Darker orange for better contrast
"info": "#1976D2", # Darker blue for better contrast
"sidebar_bg": "#FFFFFF",
"card_bg": "white",
"input_bg": "#F8F9FA"
}
# Custom CSS for better styling
st.markdown(f"""
<style>
@import url('https://fonts.googleapis.com/css2?family=Space+Grotesk:wght@300;400;500;600;700&display=swap');
:root, html, body, [class*="css"] {{
font-family: 'Space Grotesk', sans-serif;
color: {THEME["text"]} !important;
border: 1px solid {THEME["text"]} !important;
overflow-y: scroll;
overflow-x: hidden;
}}
svg, path{{
color: {THEME["text"]};
}}
/* Heading font styling */
h1, h2, h3, h4, h5, h6 {{
font-family: 'Space Grotesk', sans-serif;
letter-spacing: -0.02em;
color: {THEME["text"]};
}}
.st-emotion{{
background-color: {THEME["background"]};
}}
[data-testid="stMarkdownContainer"] h1,
[data-testid="stMarkdownContainer"] h2,
[data-testid="stMarkdownContainer"] h3 {{
font-family: 'Space Grotesk', sans-serif;
font-weight: 600;
color: {THEME["text"]};
}}
/* Examples section styling */
.examples-section {{
margin-top: 15px;
color: {THEME["text"]};
}}
.example-button {{
text-align: left;
overflow: hidden;
text-overflow: ellipsis;
white-space: nowrap;
margin-bottom: 5px;
transition: all 0.2s ease;
background-color: {THEME["input_bg"]};
border-radius: 8px;
color: {THEME["text"]};
}}
.example-button:hover {{
transform: translateX(3px);
background-color: {hex_to_rgba(THEME["primary"], 0.1)};
}}
/* Style tab content */
.stTabs [data-baseweb="tab-panel"] {{
padding-top: 1rem;
color: {THEME["text"]};
}}
/* Tab content styling */
.stTabs [data-baseweb="tab"] {{
font-family: 'Space Grotesk', sans-serif;
font-weight: 500;
color: {THEME["text"]};
}}
/* Style expandable sections */
div[data-testid="stExpander"] {{
margin-bottom: 10px !important;
background-color: {THEME["card_bg"]};
border: 1px solid {hex_to_rgba(THEME["text"], 0.1)};
color: {THEME["text"]} !important;
}}
div[data-testid="stExpander"] div[data-testid="stExpanderContent"] {{
max-height: 300px;
overflow-y: auto;
padding: 5px 10px;
}}
/* Hardware info styles */
.hardware-info {{
background-color: {hex_to_rgba(THEME["primary"], 0.05)};
border-radius: 10px;
padding: 12px;
margin: 8px 0;
border-left: 3px solid {THEME["primary"]};
color: {THEME["text"]};
}}
.hardware-title {{
font-family: 'Space Grotesk', sans-serif;
font-weight: 600;
font-size: 1.1rem;
margin-bottom: 8px;
display: flex;
align-items: center;
color: {THEME["primary"]};
}}
/* Override Streamlit's default background */
.stApp {{
background-color: {THEME["background"]};
}}
.st-emotion-cache-h4xjwg{{
background-color: {THEME["background"]};
color: {THEME["text"]};
}}
/* Code editor and text areas */
.stTextInput>div>div>input, .stTextArea>div>div>textarea {{
background-color: {THEME["input_bg"]};
color: {THEME["text"]};
font-family: 'Space Grotesk', sans-serif;
}}
/* Sidebar styling */
section[data-testid="stSidebar"] {{
background-color: {THEME["sidebar_bg"]};
color: {THEME["text"]};
}}
section[data-testid="stSidebar"] [data-testid="stMarkdown"] {{
color: {THEME["text"]};
background-color: {THEME["background"]};
}}
section[data-testid="stSidebar"] .stSelectbox label,
section[data-testid="stSidebar"] .stButton label {{
color: {THEME["text"]} !important;
background-color: {THEME["background"]} !important;
}}
section[data-testid="stSidebar"] h3 {{
color: {THEME["text"]};
background-color: {THEME["background"]};
}}
section[data-testid="stSidebar"] .main-title {{
color: {THEME["text"]};
-webkit-text-fill-color: {THEME["text"]};
background-color: {THEME["background"]};
}}
section[data-testid="stSidebar"] h1 {{
color: {THEME["text"]};
background-color: {THEME["background"]};
}}
.main-title {{
font-family: 'Space Grotesk', sans-serif;
font-size: 2.8rem;
font-weight: 700;
color: {THEME["text"]};
margin-bottom: 1rem;
letter-spacing: -0.03em;
}}
.subtitle {{
font-family: 'Space Grotesk', sans-serif;
font-size: 1.2rem;
font-weight: 400;
color: {THEME["text"]};
margin-bottom: 2rem;
}}
.category-label {{
font-weight: 600;
}}
.toxic-category {{
padding: 3px 8px;
border-radius: 12px;
background-color: {hex_to_rgba(THEME["toxic"], 0.13)};
border: 1px solid {hex_to_rgba(THEME["toxic"], 0.31)};
margin-right: 5px;
font-weight: 500;
display: inline-block;
margin-bottom: 5px;
font-size: 0.9rem;
color: {THEME["toxic"]};
transition: all 0.3s ease;
}}
.toxic-result {{
font-family: 'Space Grotesk', sans-serif;
font-size: 1.2rem;
font-weight: 700;
padding: 4px 12px;
border-radius: 8px;
display: inline-block;
box-shadow: 0 2px 8px rgba(0,0,0,0.1);
transition: all 0.3s ease;
letter-spacing: -0.02em;
}}
.model-info {{
border-left: 3px solid {THEME["primary"]};
padding-left: 10px;
transition: all 0.3s ease;
}}
.stButton button {{
font-family: 'Space Grotesk', sans-serif;
border-radius: 8px;
border: none;
font-weight: 600;
transition: all 0.3s ease;
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
background-color: {THEME["button"]} !important;
color: {THEME["text_secondary"]} !important;
padding: 0.75rem 2rem;
font-size: 1.1rem;
letter-spacing: 0.02em;
}}
.stButton button:hover {{
transform: translateY(-2px);
box-shadow: 0 4px 10px rgba(0,0,0,0.2);
background-color: {hex_to_rgba(THEME["button"], 0.9)} !important;
}}
/* Cards for metrics at top */
div[data-testid="metric-container"] {{
background-color: {THEME["card_bg"]};
border-radius: 10px;
padding: 15px;
box-shadow: 0 2px 6px rgba(0,0,0,0.05);
border: 1px solid {hex_to_rgba(THEME["text"], 0.1)};
}}
/* Fix metric label colors - more specific selectors */
div[data-testid="metric-container"] > div:first-child {{
color: {THEME["text"]} !important;
font-family: 'Space Grotesk', sans-serif;
font-weight: 500;
}}
div[data-testid="metric-container"] > div:first-child > label {{
color: {THEME["text"]} !important;
}}
/* Target the specific label element */
div[data-testid="stMetricLabel"] {{
color: {THEME["text"]} !important;
font-weight: 500 !important;
}}
div[data-testid="stMetricLabel"] > div {{
color: {THEME["text"]} !important;
}}
/* Ensure metric value is also properly colored */
div[data-testid="stMetricValue"] {{
color: {THEME["text"]} !important;
font-weight: 600 !important;
}}
/* Target all text within metric containers */
div[data-testid="metric-container"] * {{
color: {THEME["text"]} !important;
}}
/* Additional specific targeting for metric labels */
[data-testid="metric-container-label"] {{
color: {THEME["text"]} !important;
}}
[data-testid="metric-container-label-value"] {{
color: {THEME["text"]} !important;
}}
/* Force black color on metric labels */
div[data-testid="metric-container"] label,
div[data-testid="metric-container"] div[role="button"] {{
color: {THEME["text"]} !important;
}}
/* Remove default Streamlit menu and footer */
#MainMenu {{visibility: hidden;}}
footer {{visibility: hidden;}}
/* Style dataframe */
.stDataFrame {{
background-color: {THEME["card_bg"]};
}}
.footer {{
text-align: center;
opacity: 0.7;
padding: 20px;
transition: all 0.3s ease;
color: {THEME["text"]};
font-family: 'Space Grotesk', sans-serif;
}}
.footer:hover {{
opacity: 1;
}}
/* Fix dropdown text color */
div[data-baseweb="select"] div[class*="valueContainer"] {{
color: {THEME["text_secondary"]} !important;
}}
div[data-baseweb="select"] div[class*="placeholder"] {{
color: {THEME["text_secondary"]} !important;
}}
div[data-baseweb="select"] div[class*="singleValue"] {{
color: {THEME["text_secondary"]} !important;
}}
/* Fix button text color */
.stButton > button {{
background-color: {THEME["button"]} !important;
color: {THEME["text_secondary"]} !important;
font-family: 'Space Grotesk', sans-serif !important;
font-weight: 600 !important;
font-size: 1.1rem !important;
padding: 0.75rem 2rem !important;
border: none !important;
border-radius: 8px !important;
transition: all 0.2s ease !important;
box-shadow: 0 2px 5px rgba(0,0,0,0.1) !important;
letter-spacing: 0.02em !important;
}}
.stButton > button:hover {{
transform: translateY(-2px) !important;
box-shadow: 0 4px 10px rgba(0,0,0,0.2) !important;
background-color: {hex_to_rgba(THEME["button"], 0.9)} !important;
color: {THEME["text_secondary"]} !important;
}}
/* Fix dropdown styling */
div[data-baseweb="select"] {{
background-color: {THEME["button"]} !important;
border-color: {hex_to_rgba(THEME["button"], 0.5)} !important;
border-radius: 8px !important;
}}
/* Fix dropdown options */
div[data-baseweb="popover"] {{
background-color: {THEME["text"]} !important;
color: {THEME["text"]} !important;
}}
div[data-baseweb="popover"] div[role="option"] {{
color: {THEME["text_secondary"]} !important;
}}
div[data-baseweb="popover"] div[role="option"]:hover {{
background-color: {hex_to_rgba(THEME["button"], 0.7)} !important;
}}
/* Fix dropdown arrow color */
div[data-baseweb="select"] svg {{
color: {THEME["text_secondary"]} !important;
}}
/* Fix input label color */
.stTextArea label {{
color: {THEME["text"]} !important;
font-weight: 500 !important;
}}
/* Fix selectbox label */
.stSelectbox label {{
color: {THEME["text"]} !important;
font-weight: 500 !important;
}}
/* Ensure consistent black color */
.stButton > button {{
background-color: #000000 !important;
}}
div[data-baseweb="select"] {{
background-color: #000000 !important;
}}
div[data-baseweb="popover"] {{
background-color: #000000 !important;
}}
/* Style How to section */
.usage-step {{
background-color: {THEME["card_bg"]};
border: 1px solid {hex_to_rgba(THEME["text"], 0.1)};
border-radius: 10px;
padding: 1rem;
margin-bottom: 1rem;
display: flex;
align-items: center;
transition: all 0.2s ease;
}}
.usage-step:hover {{
transform: translateX(5px);
border-color: {hex_to_rgba(THEME["button"], 0.3)};
box-shadow: 0 2px 8px rgba(0,0,0,0.05);
}}
.step-number {{
background-color: {THEME["button"]};
color: {THEME["text_secondary"]};
font-family: 'Space Grotesk', sans-serif;
font-size: 1rem;
font-weight: 600;
min-width: 2.5rem;
height: 2.5rem;
border-radius: 30%;
display: flex;
align-items: center;
justify-content: center;
margin-right: 1.2rem;
}}
.usage-step div:last-child {{
font-family: 'Space Grotesk', sans-serif;
font-size: 1rem;
color: {THEME["text"]};
flex: 1;
line-height: 1.4;
}}
/* Style the How to section header */
[data-testid="stHeader"] {{
background-color: transparent !important;
}}
.colored-header {{
margin: 2rem 0 1.5rem 0;
}}
.colored-header h1 {{
font-family: 'Space Grotesk', sans-serif;
font-size: 2rem;
font-weight: 700;
color: {THEME["text"]};
margin-bottom: 0.5rem;
}}
.colored-header p {{
font-family: 'Space Grotesk', sans-serif;
font-size: 1.1rem;
color: {hex_to_rgba(THEME["text"], 0.8)};
}}
/* Fix plotly chart axis labels */
.js-plotly-plot .plotly .g-gtitle {{
color: {THEME["text"]} !important;
}}
.js-plotly-plot .plotly .xtitle,
.js-plotly-plot .plotly .ytitle {{
fill: {THEME["text"]} !important;
color: {THEME["text"]} !important;
}}
.js-plotly-plot .plotly .xtick text,
.js-plotly-plot .plotly .ytick text {{
fill: {THEME["text"]} !important;
color: {THEME["text"]} !important;
}}
/* Fix tab text color */
button[data-baseweb="tab"] {{
color: {THEME["text"]} !important;
}}
button[data-baseweb="tab"][aria-selected="true"] {{
color: {THEME["primary"]} !important;
}}
/* Fix expander arrow color */
div[data-testid="stExpander"] svg {{
color: {THEME["text"]} !important;
}}
/* Ensure plotly modebar buttons are visible */
.modebar-btn path {{
fill: {THEME["text"]} !important;
}}
/* Fix any remaining white text on white background issues */
.element-container, .stMarkdown, .stText {{
color: {THEME["text"]} !important;
}}
/* Ensure text inputs have black text */
.stTextInput input, .stTextArea textarea {{
color: {THEME["text"]} !important;
}}
/* Fix plotly legend text */
.js-plotly-plot .plotly .legend text {{
fill: {THEME["text"]} !important;
color: {THEME["text"]} !important;
}}
/* Fix success message color */
.stSuccess {{
color: {THEME["text"]} !important;
}}
/* Fix success icon color */
.stSuccess svg {{
fill: {THEME["text"]} !important;
}}
/* Ensure all alert messages have proper text color */
div[data-baseweb="notification"] {{
color: {THEME["text"]} !important;
}}
/* Fix input area text color */
textarea {{
color: {THEME["text"]} !important;
}}
</style>
""", unsafe_allow_html=True)
# Custom CSS for metric labels - Add this near the top with the other CSS
st.markdown(f"""
<style>
/* Direct targeting of metric labels */
[data-testid="stMetricLabel"] {{
color: {THEME["text"]} !important;
font-weight: 500 !important;
}}
[data-testid="stMetricLabel"] span {{
color: {THEME["text"]} !important;
font-weight: 500 !important;
}}
/* Target the label content directly */
[data-testid="stMetricLabel"] div {{
color: {THEME["text"]} !important;
}}
/* Target every element inside a metric label */
[data-testid="stMetricLabel"] * {{
color: {THEME["text"]} !important;
}}
/* Style the value too */
[data-testid="stMetricValue"] {{
color: {THEME["text"]} !important;
}}
/* Extremely specific selector to ensure it overrides everything */
div[data-testid="metric-container"] div[data-testid="stMetricLabel"] {{
color: {THEME["text"]} !important;
}}
</style>
""", unsafe_allow_html=True)
# Load model at app start
@st.cache_resource
def load_classifier():
try:
if os.path.exists(ONNX_MODEL_PATH):
classifier = OptimizedToxicityClassifier(onnx_path=ONNX_MODEL_PATH, device=DEVICE)
st.session_state['model_type'] = 'Loaded'
return classifier
elif os.path.exists(PYTORCH_MODEL_DIR):
classifier = OptimizedToxicityClassifier(pytorch_path=PYTORCH_MODEL_DIR, device=DEVICE)
st.session_state['model_type'] = 'Loaded'
return classifier
else:
st.error(f"โ No model found at {ONNX_MODEL_PATH} or {PYTORCH_MODEL_DIR}")
return None
except Exception as e:
st.error(f"Error loading model: {str(e)}")
import traceback
st.error(traceback.format_exc())
return None
def detect_language(text: str) -> str:
"""Detect language of input text"""
try:
lang, _ = langid.classify(text)
return lang if lang in SUPPORTED_LANGUAGES else 'en'
except:
return 'en'
def predict_toxicity(text: str, selected_language: str = "Auto-detect") -> Dict:
"""Predict toxicity of input text"""
if not text or not text.strip():
return {
"error": "Please enter some text to analyze.",
"results": None
}
if not st.session_state.get('model_loaded', False):
return {
"error": "Model not loaded. Please check logs.",
"results": None
}
# Add a spinner while processing
with st.spinner("Analyzing text..."):
# Record start time for inference metrics
start_time = time.time()
# Detect language if auto-detect is selected
if selected_language == "Auto-detect":
lang_detection_start = time.time()
lang_code = detect_language(text)
lang_detection_time = time.time() - lang_detection_start
detected = True
else:
# Get language code from the display name without flag
selected_name = selected_language.split(' ')[1] if len(selected_language.split(' ')) > 1 else selected_language
lang_code = next((code for code, info in SUPPORTED_LANGUAGES.items()
if info['name'] == selected_name), 'en')
lang_detection_time = 0
detected = False
# Run prediction
try:
model_inference_start = time.time()
results = classifier.predict([text], langs=[lang_code])[0]
model_inference_time = time.time() - model_inference_start
total_time = time.time() - start_time
return {
"results": results,
"detected": detected,
"lang_code": lang_code,
"performance": {
"total_time": total_time,
"lang_detection_time": lang_detection_time,
"model_inference_time": model_inference_time
}
}
except Exception as e:
import traceback
traceback.print_exc()
return {
"error": f"Error processing text: {str(e)}",
"results": None
}
# Function to set example text
def set_example(lang_code, example_type, example_index=0):
st.session_state['use_example'] = True
# Get the example based on the language, type and index
example = LANGUAGE_EXAMPLES[lang_code][example_type][example_index]
st.session_state['example_text'] = example
st.session_state['detected_lang'] = lang_code
st.session_state['example_info'] = {
'type': example_type,
'lang': lang_code,
'index': example_index
}
# Initialize session state for example selection if not present
if 'use_example' not in st.session_state:
st.session_state['use_example'] = False
st.session_state['example_text'] = ""
st.session_state['detected_lang'] = "Auto-detect"
st.session_state['example_info'] = None
# Sidebar content
with st.sidebar:
st.markdown("<h1 class='main-title'>Multilingual Toxicity Analyzer</h1>", unsafe_allow_html=True)
st.markdown("""
#### This app analyzes text for different types of toxicity across multiple languages with high accuracy.
""")
# Create language cards with flags
st.markdown("#### Supported Languages:")
lang_cols = st.columns(2)
for i, (code, info) in enumerate(SUPPORTED_LANGUAGES.items()):
col_idx = i % 2
with lang_cols[col_idx]:
st.markdown(f"<div class='language-option'><span class='language-flag'>{info['flag']}</span> {info['name']}</div>",
unsafe_allow_html=True)
st.divider()
# Language selection dropdown moved to sidebar
st.markdown("### ๐ Select Language")
language_options = ["Auto-detect"] + [f"{info['flag']} {info['name']}" for code, info in SUPPORTED_LANGUAGES.items()]
selected_language = st.selectbox(
"Choose language or use auto-detect",
language_options,
index=0,
key="selected_language",
help="Choose a specific language or use auto-detection"
)
# Examples moved to sidebar
st.markdown("### ๐ Try with examples:")
# Create tabs for toxic and non-toxic examples
example_tabs = st.tabs(["Toxic Examples", "Non-Toxic Examples"])
# Order languages by putting the most common ones first
ordered_langs = ['en', 'es', 'fr', 'pt', 'it', 'ru', 'tr']
# Toxic examples tab
with example_tabs[0]:
st.markdown('<div class="examples-section">', unsafe_allow_html=True)
for lang_code in ordered_langs:
info = SUPPORTED_LANGUAGES[lang_code]
with st.expander(f"{info['flag']} {info['name']} examples"):
for i, example in enumerate(LANGUAGE_EXAMPLES[lang_code]['toxic']):
# Display a preview of the example
preview = example[:40] + "..." if len(example) > 40 else example
button_key = f"toxic_{lang_code}_{i}"
button_help = f"Try with this {info['name']} toxic example"
# We can't directly apply CSS classes to Streamlit buttons, but we can wrap them
if st.button(f"Example {i+1}: {preview}",
key=button_key,
use_container_width=True,
help=button_help):
set_example(lang_code, 'toxic', i)
st.markdown('</div>', unsafe_allow_html=True)
# Non-toxic examples tab
with example_tabs[1]:
st.markdown('<div class="examples-section">', unsafe_allow_html=True)
for lang_code in ordered_langs:
info = SUPPORTED_LANGUAGES[lang_code]
with st.expander(f"{info['flag']} {info['name']} examples"):
for i, example in enumerate(LANGUAGE_EXAMPLES[lang_code]['non_toxic']):
# Display a preview of the example
preview = example[:40] + "..." if len(example) > 40 else example
button_key = f"non_toxic_{lang_code}_{i}"
button_help = f"Try with this {info['name']} non-toxic example"
if st.button(f"Example {i+1}: {preview}",
key=button_key,
use_container_width=True,
help=button_help):
set_example(lang_code, 'non_toxic', i)
st.markdown('</div>', unsafe_allow_html=True)
st.divider()
# Model and Hardware information in the sidebar with improved layout
st.markdown("### ๐ป System Information", unsafe_allow_html=True)
# Update system resources info
current_sys_info = update_system_resources()
# GPU section
if DEVICE == "cuda":
st.markdown("""
<div class="hardware-info">
<div class="hardware-title"><span class="icon">๐ฎ</span> GPU</div>
<div class="hardware-resource">
""", unsafe_allow_html=True)
gpu_name = GPU_INFO.split(" (")[0]
st.markdown(f"<div class='hardware-stat'><span class='label'>Model:</span> <span class='value'>{gpu_name}</span></div>", unsafe_allow_html=True)
cuda_version = "Unknown"
if "CUDA" in GPU_INFO:
cuda_version = GPU_INFO.split("CUDA ")[1].split(",")[0]
st.markdown(f"<div class='hardware-stat'><span class='label'>CUDA:</span> <span class='value'>{cuda_version}</span></div>", unsafe_allow_html=True)
current_gpu_memory = update_gpu_info()
st.markdown(f"<div class='hardware-stat'><span class='label'>Memory:</span> <span class='value'>{current_gpu_memory}</span></div>", unsafe_allow_html=True)
st.markdown("</div></div>", unsafe_allow_html=True)
# CPU section
st.markdown("""
<div class="hardware-info">
<div class="hardware-title"><span class="icon">โ๏ธ</span> CPU</div>
<div class="hardware-resource">
""", unsafe_allow_html=True)
cpu_info = current_sys_info["cpu"]
st.markdown(f"<div class='hardware-stat'><span class='label'>Model:</span> <span class='value'>{cpu_info['name']}</span></div>", unsafe_allow_html=True)
st.markdown(f"<div class='hardware-stat'><span class='label'>Cores:</span> <span class='value'>{cpu_info['cores']}</span></div>", unsafe_allow_html=True)
st.markdown(f"<div class='hardware-stat'><span class='label'>Frequency:</span> <span class='value'>{cpu_info['freq']}</span></div>", unsafe_allow_html=True)
st.markdown(f"<div class='hardware-stat'><span class='label'>Usage:</span> <span class='value'>{cpu_info['usage']}</span></div>", unsafe_allow_html=True)
st.markdown("</div></div>", unsafe_allow_html=True)
# RAM section
st.markdown("""
<div class="hardware-info">
<div class="hardware-title"><span class="icon">๐ง </span> RAM</div>
<div class="hardware-resource">
""", unsafe_allow_html=True)
ram_info = current_sys_info["ram"]
st.markdown(f"<div class='hardware-stat'><span class='label'>Total:</span> <span class='value'>{ram_info['total']}</span></div>", unsafe_allow_html=True)
st.markdown(f"<div class='hardware-stat'><span class='label'>Used:</span> <span class='value'>{ram_info['used']}</span></div>", unsafe_allow_html=True)
st.markdown(f"<div class='hardware-stat'><span class='label'>Usage:</span> <span class='value'>{ram_info['percent']}</span></div>", unsafe_allow_html=True)
st.markdown("</div></div>", unsafe_allow_html=True)
st.divider()
# Toxicity Thresholds - Moved from results section to sidebar
st.markdown("### โ๏ธ Toxicity Thresholds")
st.markdown("""
<div class='threshold-bg'>
The model uses language-specific thresholds to determine if a text is toxic:
- **Toxic**: 60%
- **Severe Toxic**: 54%
- **Obscene**: 60%
- **Threat**: 48%
- **Insult**: 60%
- **Identity Hate**: 50%
These increased thresholds reduce false positives but may miss borderline toxic content.
</div>
""", unsafe_allow_html=True)
# Display model loading status
if 'model_loaded' not in st.session_state:
with st.spinner("๐ Loading model..."):
classifier = load_classifier()
if classifier:
st.session_state['model_loaded'] = True
st.success(f"โ
Model loaded successfully on {GPU_INFO}")
else:
st.session_state['model_loaded'] = False
st.error("โ Failed to load model. Please check logs.")
else:
# Model already loaded, just get it from cache
classifier = load_classifier()
# Main app
st.markdown("""
<h1 class='main-title'>
<svg xmlns="http://www.w3.org/2000/svg" style="padding-bottom: 10px;" width="45" height="45" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="lucide lucide-shield-plus-icon lucide-shield-plus">
<path d="M20 13c0 5-3.5 7.5-7.66 8.95a1 1 0 0 1-.67-.01C7.5 20.5 4 18 4 13V6a1 1 0 0 1 1-1c2 0 4.5-1.2 6.24-2.72a1.17 1.17 0 0 1 1.52 0C14.51 3.81 17 5 19 5a1 1 0 0 1 1 1z"/>
<path d="M9 12h6"/>
<path d="M12 9v6"/>
</svg>
Multilingual Toxicity Analyzer
</h1>
""", unsafe_allow_html=True)
st.markdown("""
<p class='subtitle'>Detect toxic content in multiple languages with state-of-the-art accuracy</p>
""", unsafe_allow_html=True)
# Text input area with interactive styling
with stylable_container(
key="text_input_container",
css_styles=f"""
{{
border-radius: 10px;
overflow: hidden;
transition: all 0.3s ease;
box-shadow: 0 2px 8px rgba(0,0,0,0.15);
background-color: {THEME["card_bg"]};
padding: 10px;
margin-bottom: 15px;
}}
textarea {{
caret-color: black !important;
color: {THEME["text"]} !important;
}}
/* Ensure the text input cursor is visible */
.stTextArea textarea {{
caret-color: black !important;
}}
"""
):
# Get the current example text if it exists
current_example = st.session_state.get('example_text', '')
# Set the text input value, allowing for modifications
text_input = st.text_area(
"Enter text to analyze",
height=80,
value=current_example if st.session_state.get('use_example', False) else st.session_state.get('text_input', ''),
key="text_input",
help="Enter text in any supported language to analyze for toxicity"
)
# Check if the text has been modified from the example
if st.session_state.get('use_example', False) and text_input != current_example:
# Text was modified, clear example state
st.session_state['use_example'] = False
st.session_state['example_text'] = ""
st.session_state['example_info'] = None
# Analyze button with improved styling in a more compact layout
col1, col2, col3 = st.columns([1, 2, 1])
with col2:
analyze_button = st.button(
"Analyze Text",
type="primary",
use_container_width=True,
help="Click to analyze the entered text for toxicity"
)
# Process when button is clicked or text is submitted
if analyze_button or (text_input and 'last_analyzed' not in st.session_state or st.session_state.get('last_analyzed') != text_input):
if text_input:
st.session_state['last_analyzed'] = text_input
# Get system resource info before prediction
pre_prediction_resources = update_system_resources()
# Make prediction
prediction = predict_toxicity(text_input, selected_language)
# Update resource usage after prediction
post_prediction_resources = update_system_resources()
# Calculate resource usage delta
resource_delta = {
"cpu_usage": float(post_prediction_resources["cpu"]["usage"].rstrip("%")) - float(pre_prediction_resources["cpu"]["usage"].rstrip("%")),
"ram_usage": float(post_prediction_resources["ram"]["percent"].rstrip("%")) - float(pre_prediction_resources["ram"]["percent"].rstrip("%"))
}
# Update GPU memory info after prediction
if DEVICE == "cuda":
new_memory_info = update_gpu_info()
# Note: Ideally we would update the displayed memory usage here,
# but Streamlit doesn't support dynamic updates without a rerun,
# so we'll just include memory info in our metrics
# Set analysis status flags but remove celebration effect code
st.session_state['is_analysis_complete'] = True
st.session_state['analysis_has_error'] = "error" in prediction and prediction["error"]
if "error" in prediction and prediction["error"]:
st.error(prediction["error"])
elif prediction["results"]:
# Remove celebration effect call
# celebration_effect()
results = prediction["results"]
performance = prediction.get("performance", {})
# Overall toxicity result
is_toxic = results["is_toxic"]
result_color = THEME["toxic"] if is_toxic else THEME["non_toxic"]
result_text = "TOXIC" if is_toxic else "NON-TOXIC"
# Language info
lang_code = prediction["lang_code"]
lang_info = SUPPORTED_LANGUAGES.get(lang_code, {"name": lang_code, "flag": "๐"})
# Count toxic categories
toxic_count = len(results["toxic_categories"]) if is_toxic else 0
# Create data for visualization but don't display the table
categories = []
probabilities = []
statuses = []
# Use the same thresholds that are used in the inference model
category_thresholds = {
'toxic': 0.60,
'severe_toxic': 0.54,
'obscene': 0.60,
'threat': 0.48,
'insult': 0.60,
'identity_hate': 0.50
}
for label, prob in results["probabilities"].items():
categories.append(label.replace('_', ' ').title())
probabilities.append(round(prob * 100, 1))
threshold = category_thresholds.get(label, 0.5) * 100
statuses.append("DETECTED" if prob * 100 >= threshold else "Not Detected")
# Sort by probability for the chart
chart_data = sorted(zip(categories, probabilities, statuses), key=lambda x: x[1], reverse=True)
chart_cats, chart_probs, chart_statuses = zip(*chart_data)
# Two column layout for results
col1, col2 = st.columns([3, 2])
with col1:
# Card with overall result and detected categories
with stylable_container(
key="result_card",
css_styles=f"""
{{
border-radius: 10px;
padding: 10px 15px;
background-color: {THEME["card_bg"]};
border-left: 5px solid {result_color};
margin-bottom: 10px;
box-shadow: 0 4px 12px rgba(0,0,0,0.1);
overflow: hidden;
}}
"""
):
# Overall result with abbreviated display
st.markdown(f"""
<div style="display: flex; align-items: center; margin-bottom: 5px;">
<h3 style="margin: 0; margin-right: 10px;">Analysis Result:</h3>
<span style='background-color: {hex_to_rgba(result_color, 0.13)}; color: {result_color}; font-family: "Space Grotesk", sans-serif; font-size: 1.1rem; font-weight: 700; padding: 2px 10px; border-radius: 6px;'>{result_text}</span>
</div>
<div style="margin: 5px 0; font-size: 0.95rem;">
<b>Language:</b> {lang_info['flag']} {lang_info['name']} {'(detected)' if prediction["detected"] else ''}
</div>
<div style="margin: 5px 0 12px 0; font-size: 0.95rem;">
<b>Toxic Categories:</b> {", ".join([f'<span class="toxic-category" style="padding: 2px 6px; font-size: 0.8rem; display: inline-block;">{category.replace("_", " ").title()}</span>' for category in results["toxic_categories"]]) if is_toxic and toxic_count > 0 else '<span style="color: #666; font-size: 0.9rem;">None</span>'}
</div>
""", unsafe_allow_html=True)
# Add toxicity probability graph inside the result card
st.markdown("<h4 style='overflow: hidden; margin-top: 4px; margin-bottom: 4px;'>Toxicity Probabilities:</h4>", unsafe_allow_html=True)
# Create a horizontal bar chart with Plotly
fig = go.Figure()
# Add bars with different colors based on toxicity
for i, (cat, prob, status) in enumerate(zip(chart_cats, chart_probs, chart_statuses)):
color = THEME["toxic"] if status == "DETECTED" else THEME["non_toxic"]
border_color = hex_to_rgba(color, 0.85) # Using rgba for border
fig.add_trace(go.Bar(
y=[cat],
x=[prob],
orientation='h',
name=cat,
marker=dict(
color=color,
line=dict(
color=border_color,
width=2
)
),
text=[f"{prob}%"],
textposition='outside',
textfont=dict(size=16, weight='bold'), # Much larger, bold text
hoverinfo='text',
hovertext=[f"{cat}: {prob}%"]
))
# Update layout
fig.update_layout(
title=None,
xaxis_title="Probability (%)",
yaxis_title=None, # Remove y-axis title to save space
height=340, # Significantly increased height
margin=dict(l=10, r=40, t=20, b=40), # More margin space for labels
xaxis=dict(
range=[0, 115], # Extended for outside labels
gridcolor=hex_to_rgba(THEME["text"], 0.15),
zerolinecolor=hex_to_rgba(THEME["text"], 0.3),
color=THEME["text"],
tickfont=dict(size=15), # Larger tick font
title_font=dict(size=16, family="Space Grotesk, sans-serif") # Larger axis title
),
yaxis=dict(
gridcolor=hex_to_rgba(THEME["text"], 0.15),
color=THEME["text"],
tickfont=dict(size=15, family="Space Grotesk, sans-serif", weight='bold'), # Larger, bold category names
automargin=True # Auto-adjust margin to fit category names
),
bargap=0.3, # More space between bars
paper_bgcolor='rgba(0,0,0,0)',
plot_bgcolor='rgba(0,0,0,0)',
font=dict(
family="Space Grotesk, sans-serif",
color=THEME["text"],
size=15 # Larger base font size
),
showlegend=False
)
# Grid lines
fig.update_xaxes(
showgrid=True,
gridwidth=1.5, # Slightly wider grid lines
gridcolor=hex_to_rgba(THEME["text"], 0.15),
dtick=20
)
# Display the plot
st.plotly_chart(fig, use_container_width=True, config={
'displayModeBar': False,
'displaylogo': False
})
with col2:
# Performance metrics card
if performance:
with stylable_container(
key="performance_metrics_card",
css_styles=f"""
{{
border-radius: 10px;
padding: 20px;
background-color: {THEME["card_bg"]};
border-left: 3px solid {THEME["primary"]};
height: 100%;
box-shadow: 0 4px 12px rgba(0,0,0,0.1);
}}
"""
):
st.markdown("<h3 style='margin-top: 0;'>Performance Metrics</h3>", unsafe_allow_html=True)
total_time = performance.get("total_time", 0)
inference_time = performance.get("model_inference_time", 0)
lang_detection_time = performance.get("lang_detection_time", 0)
# Create tabs for different types of metrics
perf_tab1, perf_tab2 = st.tabs(["Time Metrics", "Resource Usage"])
with perf_tab1:
time_cols = st.columns(1)
with time_cols[0]:
# Use custom HTML metrics instead of st.metric
total_time_val = f"{total_time:.3f}s"
inference_time_val = f"{inference_time:.3f}s"
lang_detection_time_val = f"{lang_detection_time:.3f}s"
st.markdown(f"""
<div style="background-color: white; border-left: 3px solid {THEME["primary"]}; border: 1px solid {hex_to_rgba(THEME["primary"], 0.2)}; border-radius: 10px; padding: 10px; margin-bottom: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.05);">
<div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 500; font-size: 0.85rem; margin-bottom: 3px;">
Total Time
</div>
<div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 600; font-size: 1.2rem;">
{total_time_val}
</div>
</div>
<div style="background-color: white; border-left: 3px solid {THEME["primary"]}; border: 1px solid {hex_to_rgba(THEME["primary"], 0.2)}; border-radius: 10px; padding: 10px; margin-bottom: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.05);">
<div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 500; font-size: 0.85rem; margin-bottom: 3px;">
Model Inference
</div>
<div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 600; font-size: 1.2rem;">
{inference_time_val}
</div>
</div>
<div style="background-color: white; border-left: 3px solid {THEME["primary"]}; border: 1px solid {hex_to_rgba(THEME["primary"], 0.2)}; border-radius: 10px; padding: 10px; margin-bottom: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.05);">
<div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 500; font-size: 0.85rem; margin-bottom: 3px;">
Language Detection
</div>
<div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 600; font-size: 1.2rem;">
{lang_detection_time_val}
</div>
</div>
""", unsafe_allow_html=True)
with perf_tab2:
# Display system resource metrics with custom HTML
current_sys_info = update_system_resources()
# Format delta: add + sign for positive values
cpu_usage = current_sys_info["cpu"]["usage"]
cpu_delta = f"{resource_delta['cpu_usage']:+.1f}%" if abs(resource_delta['cpu_usage']) > 0.1 else None
cpu_delta_display = f" ({cpu_delta})" if cpu_delta else ""
ram_usage = current_sys_info["ram"]["percent"]
ram_delta = f"{resource_delta['ram_usage']:+.1f}%" if abs(resource_delta['ram_usage']) > 0.1 else None
ram_delta_display = f" ({ram_delta})" if ram_delta else ""
if DEVICE == "cuda":
gpu_memory = update_gpu_info()
memory_display = f"GPU Memory: {gpu_memory}"
else:
memory_display = f"System RAM: {current_sys_info['ram']['used']} / {current_sys_info['ram']['total']}"
st.markdown(f"""
<div style="background-color: white; border-left: 3px solid {THEME["primary"]}; border: 1px solid {hex_to_rgba(THEME["primary"], 0.2)}; border-radius: 10px; padding: 10px; margin-bottom: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.05);">
<div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 500; font-size: 0.85rem; margin-bottom: 3px;">
CPU Usage
</div>
<div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 600; font-size: 1.2rem;">
{cpu_usage}<span style="font-size: 0.9rem; color: {THEME["primary"]};">{cpu_delta_display}</span>
</div>
</div>
<div style="background-color: white; border-left: 3px solid {THEME["primary"]}; border: 1px solid {hex_to_rgba(THEME["primary"], 0.2)}; border-radius: 10px; padding: 10px; margin-bottom: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.05);">
<div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 500; font-size: 0.85rem; margin-bottom: 3px;">
RAM Usage
</div>
<div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 600; font-size: 1.2rem;">
{ram_usage}<span style="font-size: 0.9rem; color: {THEME["primary"]};">{ram_delta_display}</span>
</div>
</div>
<div style="background-color: white; border-left: 3px solid {THEME["primary"]}; border: 1px solid {hex_to_rgba(THEME["primary"], 0.2)}; border-radius: 10px; padding: 10px; margin-bottom: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.05);">
<div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 500; font-size: 0.85rem; margin-bottom: 3px;">
Memory
</div>
<div style="color: {THEME["text"]}; font-family: 'Space Grotesk', sans-serif; font-weight: 600; font-size: 1.2rem;">
{memory_display}
</div>
</div>
""", unsafe_allow_html=True)
else:
pass # Remove the info message
# Bottom section with improved styling for usage guide
st.divider()
colored_header(
label="How to use this AI Model",
description="Follow these steps to analyze text for toxicity",
color_name="blue-70"
)
# Steps with more engaging design
st.markdown("""
<div class='usage-step'>
<div class='step-number'>1</div>
<div>Enter text in the input box above. You can type directly or paste from another source.</div>
</div>
<div class='usage-step'>
<div class='step-number'>2</div>
<div>Select a specific language from the sidebar or use the auto-detect feature if you're unsure.</div>
</div>
<div class='usage-step'>
<div class='step-number'>3</div>
<div>Click "Analyze Text" to get detailed toxicity analysis results.</div>
</div>
<div class='usage-step'>
<div class='step-number'>4</div>
<div>Examine the breakdown of toxicity categories, probabilities, and visualization.</div>
</div>
<div class='usage-step'>
<div class='step-number'>5</div>
<div>Try different examples from the sidebar to see how the model performs with various languages.</div>
</div>
""", unsafe_allow_html=True)
# Adding footer with credits and improved styling
st.markdown("""
<div class='footer'>
<div>Powered by XLM-RoBERTa | Streamlit UI</div>
<div style='font-size: 0.9rem; margin-top: 5px;'>Made with โค๏ธ by Deeptanshu, Nauman, Sara and Soham</div>
</div>
""", unsafe_allow_html=True) |