File size: 14,670 Bytes
d187b57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
import torch
from model.language_aware_transformer import LanguageAwareTransformer
from transformers import XLMRobertaTokenizer
import os
import re
import json
from pathlib import Path
import logging
from langdetect import detect, DetectorFactory
from langdetect.lang_detect_exception import LangDetectException
import sys
import locale
import io
# Force UTF-8 encoding for stdin/stdout
if sys.platform == 'win32':
# Windows-specific handling
import msvcrt
sys.stdin = io.TextIOWrapper(sys.stdin.buffer, encoding='utf-8')
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8', errors='replace')
# Set console to UTF-8 mode
os.system('chcp 65001')
else:
# Unix-like systems
if sys.stdout.encoding != 'utf-8':
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8')
if sys.stdin.encoding != 'utf-8':
sys.stdin = io.TextIOWrapper(sys.stdin.buffer, encoding='utf-8')
# Set up logging with UTF-8 encoding
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(sys.stdout)
]
)
logger = logging.getLogger(__name__)
# Ensure reproducibility with langdetect
DetectorFactory.seed = 0
SUPPORTED_LANGUAGES = {
'en': 0, 'ru': 1, 'tr': 2, 'es': 3,
'fr': 4, 'it': 5, 'pt': 6
}
# Default thresholds optimized on validation set
DEFAULT_THRESHOLDS = {
'toxic': 0.80, # Optimized for general toxicity
'severe_toxic': 0.45, # Lower to catch serious cases
'obscene': 0.48, # Balanced for precision/recall
'threat': 0.42, # Lower to catch potential threats
'insult': 0.70, # Balanced for common cases
'identity_hate': 0.43 # Lower to catch hate speech
}
# Unicode ranges for different scripts
UNICODE_RANGES = {
'ru': [
(0x0400, 0x04FF), # Cyrillic
(0x0500, 0x052F), # Cyrillic Supplement
],
'tr': [
(0x011E, 0x011F), # Ğ ğ
(0x0130, 0x0131), # İ ı
(0x015E, 0x015F), # Ş ş
],
'es': [
(0x00C1, 0x00C1), # Á
(0x00C9, 0x00C9), # É
(0x00CD, 0x00CD), # Í
(0x00D1, 0x00D1), # Ñ
(0x00D3, 0x00D3), # Ó
(0x00DA, 0x00DA), # Ú
(0x00DC, 0x00DC), # Ü
],
'fr': [
(0x00C0, 0x00C6), # À-Æ
(0x00C8, 0x00CB), # È-Ë
(0x00CC, 0x00CF), # Ì-Ï
(0x00D2, 0x00D6), # Ò-Ö
(0x0152, 0x0153), # Œ œ
],
'it': [
(0x00C0, 0x00C0), # À
(0x00C8, 0x00C8), # È
(0x00C9, 0x00C9), # É
(0x00CC, 0x00CC), # Ì
(0x00D2, 0x00D2), # Ò
(0x00D9, 0x00D9), # Ù
],
'pt': [
(0x00C0, 0x00C3), # À-Ã
(0x00C7, 0x00C7), # Ç
(0x00C9, 0x00CA), # É-Ê
(0x00D3, 0x00D5), # Ó-Õ
]
}
def load_model(model_path):
"""Load the trained model and tokenizer"""
try:
# Convert to absolute Path object
model_dir = Path(model_path).absolute()
if model_dir.is_dir():
# Check for 'latest' symlink first
latest_link = model_dir / 'latest'
if latest_link.exists() and latest_link.is_symlink():
# Get the target of the symlink
target = latest_link.readlink()
# If target is absolute, use it directly
if target.is_absolute():
model_dir = target
else:
# If target is relative, resolve it relative to the symlink's directory
model_dir = (latest_link.parent / target).resolve()
logger.info(f"Using latest checkpoint: {model_dir}")
else:
# Find most recent checkpoint
checkpoints = sorted([
d for d in model_dir.iterdir()
if d.is_dir() and d.name.startswith('checkpoint_epoch')
])
if checkpoints:
model_dir = checkpoints[-1]
logger.info(f"Using most recent checkpoint: {model_dir}")
else:
logger.info("No checkpoints found, using base directory")
logger.info(f"Loading model from: {model_dir}")
# Verify the directory exists
if not model_dir.exists():
raise FileNotFoundError(f"Model directory not found: {model_dir}")
# Initialize the custom model architecture
model = LanguageAwareTransformer(
num_labels=6,
hidden_size=1024,
num_attention_heads=16,
model_name='xlm-roberta-large'
)
# Load the trained weights
weights_path = model_dir / 'pytorch_model.bin'
if not weights_path.exists():
raise FileNotFoundError(f"Model weights not found at {weights_path}")
state_dict = torch.load(weights_path)
model.load_state_dict(state_dict)
logger.info("Model weights loaded successfully")
# Load base XLM-RoBERTa tokenizer directly
logger.info("Loading XLM-RoBERTa tokenizer...")
tokenizer = XLMRobertaTokenizer.from_pretrained('xlm-roberta-large')
# Load training metadata if available
metadata_path = model_dir / 'metadata.json'
if metadata_path.exists():
with open(metadata_path) as f:
metadata = json.load(f)
logger.info(f"Loaded checkpoint metadata: Epoch {metadata.get('epoch', 'unknown')}")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
model.eval()
return model, tokenizer, device
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
logger.error("\nPlease ensure that:")
logger.error("1. You have trained the model first using train.py")
logger.error("2. The model weights are saved in the correct location")
logger.error("3. You have sufficient permissions to access the model files")
return None, None, None
def adjust_thresholds(thresholds):
"""
Adjust thresholds based on recommendations to reduce overflagging
"""
if not thresholds:
return thresholds
adjusted = thresholds.copy()
# Adjust thresholds for each language
for lang_id in adjusted:
for category, recommended in DEFAULT_THRESHOLDS.items():
if category in adjusted[lang_id]:
# Only increase threshold if recommended is higher
adjusted[lang_id][category] = max(adjusted[lang_id][category], recommended)
return adjusted
def analyze_unicode_ranges(text):
"""Analyze text for characters in language-specific Unicode ranges"""
scores = {lang: 0 for lang in SUPPORTED_LANGUAGES.keys()}
for char in text:
code = ord(char)
for lang, ranges in UNICODE_RANGES.items():
for start, end in ranges:
if start <= code <= end:
scores[lang] += 1
return scores
def analyze_tokenizer_stats(text, tokenizer):
"""Analyze tokenizer statistics for language detection"""
# Get tokenizer output
tokens = tokenizer.tokenize(text)
# Count language-specific token patterns
scores = {lang: 0 for lang in SUPPORTED_LANGUAGES.keys()}
# Analyze token patterns
for token in tokens:
token = token.lower()
# Check for language-specific subwords
if 'en' in token or '_en' in token:
scores['en'] += 1
elif 'ru' in token or '_ru' in token:
scores['ru'] += 1
elif 'tr' in token or '_tr' in token:
scores['tr'] += 1
elif 'es' in token or '_es' in token:
scores['es'] += 1
elif 'fr' in token or '_fr' in token:
scores['fr'] += 1
elif 'it' in token or '_it' in token:
scores['it'] += 1
elif 'pt' in token or '_pt' in token:
scores['pt'] += 1
return scores
def detect_language(text, tokenizer):
"""
Enhanced language detection using langdetect with multiple fallback methods:
1. Primary: langdetect library
2. Fallback 1: ASCII analysis for English
3. Fallback 2: Unicode range analysis
4. Fallback 3: Tokenizer statistics
"""
try:
# Clean text
text = text.strip()
# If empty or just punctuation, default to English
if not text or not re.search(r'\w', text):
return SUPPORTED_LANGUAGES['en']
# Primary method: Use langdetect
try:
detected_code = detect(text)
# Map some common language codes that might differ
lang_mapping = {
'eng': 'en',
'rus': 'ru',
'tur': 'tr',
'spa': 'es',
'fra': 'fr',
'ita': 'it',
'por': 'pt'
}
detected_code = lang_mapping.get(detected_code, detected_code)
if detected_code in SUPPORTED_LANGUAGES:
return SUPPORTED_LANGUAGES[detected_code]
except LangDetectException:
pass # Continue to fallback methods
# Fallback 1: If text is ASCII only, likely English
if all(ord(c) < 128 for c in text):
return SUPPORTED_LANGUAGES['en']
# Fallback 2 & 3: Combine Unicode analysis and tokenizer statistics
unicode_scores = analyze_unicode_ranges(text)
tokenizer_scores = analyze_tokenizer_stats(text, tokenizer)
# Combine scores with weights
final_scores = {lang: 0 for lang in SUPPORTED_LANGUAGES.keys()}
for lang in SUPPORTED_LANGUAGES.keys():
final_scores[lang] = (
unicode_scores[lang] * 2 + # Unicode ranges have higher weight
tokenizer_scores[lang]
)
# Get language with highest score
if any(score > 0 for score in final_scores.values()):
detected_lang = max(final_scores.items(), key=lambda x: x[1])[0]
return SUPPORTED_LANGUAGES[detected_lang]
# Default to English if no clear match
return SUPPORTED_LANGUAGES['en']
except Exception as e:
logger.warning(f"Language detection failed ({str(e)}). Using English.")
return SUPPORTED_LANGUAGES['en']
def predict_toxicity(text, model, tokenizer, device):
"""Predict toxicity labels for a given text"""
# Detect language
lang_id = detect_language(text, tokenizer)
# Tokenize text
encoding = tokenizer(
text,
max_length=128,
padding='max_length',
truncation=True,
return_tensors='pt'
)
# Move to device
input_ids = encoding['input_ids'].to(device)
attention_mask = encoding['attention_mask'].to(device)
# Get predictions
with torch.no_grad():
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
predictions = outputs['probabilities']
# Convert to probabilities
probabilities = predictions[0].cpu().numpy()
# Labels for toxicity types
labels = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']
# Create results dictionary using optimized thresholds
results = {}
for label, prob in zip(labels, probabilities):
threshold = DEFAULT_THRESHOLDS.get(label, 0.5) # Use optimized defaults
results[label] = {
'probability': float(prob),
'is_toxic': prob > threshold,
'threshold': threshold
}
return results, lang_id
def main():
# Load model
print("Loading model...")
model_path = 'weights/toxic_classifier_xlm-roberta-large/latest'
model, tokenizer, device = load_model(model_path)
if model is None or tokenizer is None:
return
while True:
try:
# Get input text with proper Unicode handling
print("\nEnter text to analyze (or 'q' to quit):")
try:
if sys.platform == 'win32':
# Windows-specific input handling
text = sys.stdin.buffer.readline().decode('utf-8').strip()
else:
text = input().strip()
except UnicodeDecodeError:
# Fallback to latin-1 if UTF-8 fails
if sys.platform == 'win32':
text = sys.stdin.buffer.readline().decode('latin-1').strip()
else:
text = sys.stdin.buffer.readline().decode('latin-1').strip()
if text.lower() == 'q':
break
if not text:
print("Please enter some text to analyze.")
continue
# Make prediction
print("\nAnalyzing text...")
predictions, lang_id = predict_toxicity(text, model, tokenizer, device)
# Get language name
lang_name = [k for k, v in SUPPORTED_LANGUAGES.items() if v == lang_id][0]
# Print results
print("\nResults:")
print("-" * 50)
print(f"Text: {text}")
print(f"Detected Language: {lang_name}")
print("\nToxicity Analysis:")
any_toxic = False
for label, result in predictions.items():
if result['is_toxic']:
any_toxic = True
print(f"- {label}: {result['probability']:.2%} (threshold: {result['threshold']:.2%}) ⚠️")
# Print non-toxic results with lower emphasis
print("\nOther categories:")
for label, result in predictions.items():
if not result['is_toxic']:
print(f"- {label}: {result['probability']:.2%} (threshold: {result['threshold']:.2%}) ✓")
# Overall assessment
print("\nOverall Assessment:")
if any_toxic:
print("⚠️ This text contains toxic content")
else:
print("✅ This text appears to be non-toxic")
except Exception as e:
logger.error(f"Unexpected error: {str(e)}")
print("\nAn unexpected error occurred. Please try again.")
continue
if __name__ == "__main__":
main() |