File size: 14,856 Bytes
d187b57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
# language_aware_transformer.py
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import XLMRobertaModel
from typing import Optional
import logging
import os
import json

logger = logging.getLogger(__name__)

SUPPORTED_LANGUAGES = {
    'en': 0, 'ru': 1, 'tr': 2, 'es': 3,
    'fr': 4, 'it': 5, 'pt': 6
}

def validate_lang_ids(lang_ids):
    if not isinstance(lang_ids, torch.Tensor):
        lang_ids = torch.tensor(lang_ids, dtype=torch.long)
    # Use actual language count instead of hardcoded 9
    return torch.clamp(lang_ids, min=0, max=len(SUPPORTED_LANGUAGES)-1)

class LanguageAwareClassifier(nn.Module):
    def __init__(self, hidden_size=1024, num_labels=6):
        super().__init__()
        self.lang_embed = nn.Embedding(7, 64)  # 7 languages
        
        # Simplified classifier layers
        self.classifier = nn.Sequential(
            nn.Linear(hidden_size + 64, 512),
            nn.LayerNorm(512),
            nn.GELU(),
            nn.Linear(512, num_labels)
        )

        # Vectorized language-specific thresholds
        self.lang_thresholds = nn.Parameter(
            torch.ones(len(SUPPORTED_LANGUAGES), num_labels)
        )
        # Initialize with small random values around 1
        nn.init.normal_(self.lang_thresholds, mean=1.0, std=0.01)
        
        self._init_weights()
    
    def _init_weights(self):
        """Initialize weights with Xavier uniform"""
        for module in self.classifier:
            if isinstance(module, nn.Linear):
                nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)
            elif isinstance(module, nn.LayerNorm):
                nn.init.constant_(module.bias, 0)
                nn.init.constant_(module.weight, 1.0)

    def forward(self, x, lang_ids):
        # Ensure lang_ids is a tensor of integers
        if not isinstance(lang_ids, torch.Tensor):
            lang_ids = torch.tensor(lang_ids, dtype=torch.long, device=x.device)
        elif lang_ids.dtype != torch.long:
            lang_ids = lang_ids.long()
        
        # Get language embeddings
        lang_emb = self.lang_embed(lang_ids)  # Shape: [batch_size, 64]
        
        # Concatenate features with language embeddings for classification
        combined = torch.cat([x, lang_emb], dim=-1)  # Shape: [batch_size, hidden_size + 64]
        
        # Apply simplified classifier
        logits = self.classifier(combined)  # Shape: [batch_size, num_labels]

        # Apply language-specific thresholds using vectorized operations
        thresholds = self.lang_thresholds[lang_ids]  # Shape: [batch_size, num_labels]
        logits = logits * torch.sigmoid(thresholds)  # Shape: [batch_size, num_labels]

        return logits

class WeightedBCEWithLogitsLoss(nn.Module):
    def __init__(self, gamma=2.0, reduction='mean'):
        super().__init__()
        self.gamma = gamma
        self.reduction = reduction

    def forward(self, logits, targets, weights=None):
        bce_loss = F.binary_cross_entropy_with_logits(
            logits, targets, reduction='none'
        )
        pt = torch.exp(-bce_loss)
        focal_loss = (1 - pt)**self.gamma * bce_loss
        if weights is not None:
            focal_loss *= weights
        return focal_loss.mean()

class LanguageAwareTransformer(nn.Module):
    def __init__(
        self, 
        num_labels: int = 6,
        hidden_size: int = 1024,
        num_attention_heads: int = 16,
        model_name: str = "xlm-roberta-large",
        dropout: float = 0.0
    ):
        super().__init__()
        
        # Validate supported languages
        if not SUPPORTED_LANGUAGES:
            raise ValueError("No supported languages defined")
        logger.info(f"Initializing model with {len(SUPPORTED_LANGUAGES)} supported languages: {list(SUPPORTED_LANGUAGES.keys())}")
        
        # Load pretrained model
        self.base_model = XLMRobertaModel.from_pretrained(model_name)
        self.config = self.base_model.config
        
        # Project to custom hidden size if different from original
        self.original_hidden_size = self.config.hidden_size
        self.needs_projection = hidden_size != self.original_hidden_size
        if self.needs_projection:
            self.dim_projection = nn.Sequential(
                nn.Linear(self.original_hidden_size, hidden_size),
                nn.LayerNorm(hidden_size),
                nn.GELU()
            )
        
        # Working hidden size
        self.working_hidden_size = hidden_size if self.needs_projection else self.original_hidden_size
        
        # Language-aware attention components with dynamic language count
        num_languages = len(SUPPORTED_LANGUAGES)
        self.lang_embed = nn.Embedding(num_languages, 64)
        
        # Register supported languages for validation
        self.register_buffer('valid_lang_ids', torch.arange(num_languages))
        
        # Optimized language projection for attention bias
        self.lang_proj = nn.Sequential(
            nn.Linear(64, num_attention_heads * hidden_size // num_attention_heads),
            nn.LayerNorm(num_attention_heads * hidden_size // num_attention_heads),
            nn.Tanh()  # Bounded activation for stable attention scores
        )
        
        # Multi-head attention with optimized head dimension
        head_dim = hidden_size // num_attention_heads
        self.scale = head_dim ** -0.5  # Scaling factor for attention scores
        
        self.q_proj = nn.Linear(hidden_size, hidden_size)
        self.k_proj = nn.Linear(hidden_size, hidden_size)
        self.v_proj = nn.Linear(hidden_size, hidden_size)
        self.dropout = nn.Dropout(dropout)
        
        self.post_attention = nn.Sequential(
            nn.Linear(hidden_size, hidden_size),
            nn.LayerNorm(hidden_size),
            nn.GELU()
        )
        
        # Output classifier
        self.classifier = nn.Sequential(
            nn.Linear(hidden_size, 512),
            nn.LayerNorm(512),
            nn.GELU(),
            nn.Linear(512, num_labels)
        )
        
        self._init_weights()
        self.gradient_checkpointing = False
    
    def _init_weights(self):
        """Initialize weights with careful scaling"""
        for module in [self.lang_proj, self.q_proj, self.k_proj, self.v_proj, 
                      self.post_attention, self.classifier]:
            if isinstance(module, nn.Sequential):
                for layer in module:
                    if isinstance(layer, nn.Linear):
                        # Use scaled initialization for attention projections
                        if layer in [self.q_proj, self.k_proj, self.v_proj]:
                            nn.init.normal_(layer.weight, std=0.02)
                        else:
                            nn.init.xavier_uniform_(layer.weight)
                        if layer.bias is not None:
                            nn.init.zeros_(layer.bias)
                    elif isinstance(layer, nn.LayerNorm):
                        nn.init.ones_(layer.weight)
                        nn.init.zeros_(layer.bias)
            elif isinstance(module, nn.Linear):
                if module in [self.q_proj, self.k_proj, self.v_proj]:
                    nn.init.normal_(module.weight, std=0.02)
                else:
                    nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.zeros_(module.bias)
    
    def gradient_checkpointing_enable(self):
        self.gradient_checkpointing = True
        self.base_model.gradient_checkpointing_enable()
    
    def gradient_checkpointing_disable(self):
        self.gradient_checkpointing = False
        self.base_model.gradient_checkpointing_disable()
    
    def validate_lang_ids(self, lang_ids: torch.Tensor) -> torch.Tensor:
        """
        Validate and normalize language IDs
        Args:
            lang_ids: Tensor of language IDs
        Returns:
            Validated and normalized language ID tensor
        Raises:
            ValueError if too many invalid IDs detected
        """
        if not isinstance(lang_ids, torch.Tensor):
            lang_ids = torch.tensor(lang_ids, dtype=torch.long, device=self.valid_lang_ids.device)
        elif lang_ids.dtype != torch.long:
            lang_ids = lang_ids.long()
        
        # Check for out-of-bounds IDs
        invalid_mask = ~torch.isin(lang_ids, self.valid_lang_ids)
        num_invalid = invalid_mask.sum().item()
        
        if num_invalid > 0:
            invalid_ratio = num_invalid / lang_ids.numel()
            if invalid_ratio > 0.1:  # More than 10% invalid
                raise ValueError(
                    f"Too many invalid language IDs detected ({num_invalid} out of {lang_ids.numel()}). "
                    f"Valid range is 0-{len(SUPPORTED_LANGUAGES)-1}"
                )
            # Log warning and clamp invalid IDs
            logger.warning(
                f"Found {num_invalid} invalid language IDs. "
                f"Valid range is 0-{len(SUPPORTED_LANGUAGES)-1}. "
                "Invalid IDs will be clamped to valid range."
            )
            lang_ids = torch.clamp(lang_ids, min=0, max=len(SUPPORTED_LANGUAGES)-1)
        
        return lang_ids
    
    def forward(
        self, 
        input_ids: torch.Tensor,
        attention_mask: torch.Tensor,
        labels: Optional[torch.Tensor] = None,
        lang_ids: Optional[torch.Tensor] = None,
        mode: str = 'train'
    ) -> dict:
        device = input_ids.device
        batch_size = input_ids.size(0)
        
        # Handle language IDs with validation
        if lang_ids is None:
            lang_ids = torch.zeros(batch_size, dtype=torch.long, device=device)
        
        # Validate and normalize language IDs
        try:
            lang_ids = self.validate_lang_ids(lang_ids)
        except ValueError as e:
            logger.error(f"Language ID validation failed: {str(e)}")
            logger.error("Falling back to default language (0)")
            lang_ids = torch.zeros_like(lang_ids)
        
        # Base model forward pass
        hidden_states = self.base_model(
            input_ids=input_ids,
            attention_mask=attention_mask
        ).last_hidden_state  # Shape: [batch_size, seq_len, hidden_size]

        # Check for numerical instabilities
        if hidden_states.isnan().any():
            raise ValueError("NaN detected in hidden states")
        if hidden_states.isinf().any():
            raise ValueError("Inf detected in hidden states")

        # Project if needed
        if self.needs_projection:
            hidden_states = self.dim_projection(hidden_states)
        
        # Generate language-aware attention bias
        lang_emb = self.lang_embed(lang_ids)  # [batch_size, 64]
        lang_bias = self.lang_proj(lang_emb)  # [batch_size, num_heads * head_dim]
        
        # Reshape for multi-head attention
        batch_size, seq_len, hidden_size = hidden_states.shape
        num_heads = self.config.num_attention_heads
        head_dim = hidden_size // num_heads
        
        # Project queries, keys, and values
        q = self.q_proj(hidden_states).view(batch_size, seq_len, num_heads, head_dim)
        k = self.k_proj(hidden_states).view(batch_size, seq_len, num_heads, head_dim)
        v = self.v_proj(hidden_states).view(batch_size, seq_len, num_heads, head_dim)
        
        # Transpose for attention computation
        q = q.transpose(1, 2)  # [batch_size, num_heads, seq_len, head_dim]
        k = k.transpose(1, 2)
        v = v.transpose(1, 2)
        
        # Compute attention scores with language bias
        attn_bias = lang_bias.view(batch_size, num_heads, head_dim, 1)
        attn_scores = torch.matmul(q, k.transpose(-2, -1)) * self.scale
        attn_scores = attn_scores + torch.matmul(q, attn_bias).squeeze(-1).unsqueeze(-1)
        
        # Apply attention mask
        if attention_mask is not None:
            attn_scores = attn_scores.masked_fill(
                ~attention_mask.bool().unsqueeze(1).unsqueeze(2),
                float('-inf')
            )
        
        # Compute attention weights and apply to values
        attn_weights = F.softmax(attn_scores, dim=-1)
        attn_weights = self.dropout(attn_weights)
        attention_output = torch.matmul(attn_weights, v)
        
        # Reshape and post-process
        attention_output = attention_output.transpose(1, 2).contiguous().view(
            batch_size, seq_len, hidden_size
        )
        output = self.post_attention(attention_output)
        
        # Get logits using the [CLS] token output
        logits = self.classifier(output[:, 0])
        
        # Apply language-specific threshold adjustments based on statistical patterns
        LANG_THRESHOLD_ADJUSTMENTS = {
            0: [0.00, 0.00, 0.00, 0.00, 0.00, 0.00],  # en (baseline)
            1: [-0.02, 0.00, 0.02, 0.00, -0.03, 0.00],  # ru (higher insult tendency)
            2: [-0.02, 0.00, 0.02, 0.00, -0.03, 0.00],  # tr
            3: [-0.02, 0.00, 0.02, 0.00, -0.03, 0.00],  # es
            4: [-0.02, 0.00, 0.02, 0.00, -0.03, 0.00],  # fr
            5: [-0.02, 0.00, 0.02, 0.00, -0.03, 0.00],  # it
            6: [-0.02, 0.00, 0.02, 0.00, -0.03, 0.00],  # pt
        }
        
        # Get threshold adjustments for each instance in batch
        if mode == 'inference':
            threshold_adj = torch.tensor(
                [LANG_THRESHOLD_ADJUSTMENTS[lang.item()] for lang in lang_ids],
                device=logits.device
            )
            # Apply adjustment to logits
            logits = logits + threshold_adj
        
        probabilities = torch.sigmoid(logits)
        
        # Prepare output dictionary
        result = {
            'logits': logits,
            'probabilities': probabilities
        }
        
        # Add loss if labels are provided
        if labels is not None:
            loss_fct = WeightedBCEWithLogitsLoss()
            result['loss'] = loss_fct(logits, labels)
        
        return result
    
    def save_pretrained(self, save_path: str):
        os.makedirs(save_path, exist_ok=True)
        torch.save(self.state_dict(), os.path.join(save_path, 'pytorch_model.bin'))
        
        config_dict = {
            'num_labels': self.classifier[-1].out_features,
            'hidden_size': self.config.hidden_size,
            'num_attention_heads': self.config.num_attention_heads,
            'model_name': self.config.name_or_path,
            'dropout': self.dropout.p
        }
        
        with open(os.path.join(save_path, 'config.json'), 'w') as f:
            json.dump(config_dict, f, indent=2)