File size: 8,602 Bytes
d187b57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import os
import torch
# Configure CPU and thread settings FIRST, before any other imports
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '1'
os.environ['TF_CPU_ENABLE_AVX2'] = '1'
os.environ['TF_CPU_ENABLE_AVX512F'] = '1'
os.environ['TF_CPU_ENABLE_AVX512_VNNI'] = '1'
os.environ['TF_CPU_ENABLE_FMA'] = '1'
os.environ['MKL_NUM_THREADS'] = '80'
os.environ['OMP_NUM_THREADS'] = '80'
# Set PyTorch thread configurations once
torch.set_num_threads(80)
torch.set_num_interop_threads(10)
# Now import everything else
import pandas as pd
import numpy as np
from pathlib import Path
import logging
from datetime import datetime
import sys
from toxic_augment import ToxicAugmenter
import json
# Configure logging
log_dir = Path("logs")
log_dir.mkdir(exist_ok=True)
timestamp = datetime.now().strftime("%Y_%m_%d_%H_%M_%S")
log_file = log_dir / f"balance_english_{timestamp}.log"
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s | %(message)s',
handlers=[
logging.StreamHandler(sys.stdout),
logging.FileHandler(log_file)
]
)
logger = logging.getLogger(__name__)
def analyze_label_distribution(df, lang='en'):
"""Analyze label distribution for a specific language"""
labels = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']
lang_df = df[df['lang'] == lang]
total = len(lang_df)
if total == 0:
logger.warning(f"No samples found for language {lang.upper()}.")
return {}
logger.info(f"\nLabel Distribution for {lang.upper()}:")
logger.info("-" * 50)
dist = {}
for label in labels:
count = lang_df[label].sum()
percentage = (count / total) * 100
dist[label] = {'count': int(count), 'percentage': percentage}
logger.info(f"{label}: {count:,} ({percentage:.2f}%)")
return dist
def analyze_language_distribution(df):
"""Analyze current language distribution"""
lang_dist = df['lang'].value_counts()
logger.info("\nCurrent Language Distribution:")
logger.info("-" * 50)
for lang, count in lang_dist.items():
logger.info(f"{lang}: {count:,} comments ({count/len(df)*100:.2f}%)")
return lang_dist
def calculate_required_samples(df):
"""Calculate how many English samples we need to generate"""
lang_counts = df['lang'].value_counts()
target_count = lang_counts.max() # Use the largest language count as target
en_count = lang_counts.get('en', 0)
required_samples = target_count - en_count
logger.info(f"\nTarget count per language: {target_count:,}")
logger.info(f"Current English count: {en_count:,}")
logger.info(f"Required additional English samples: {required_samples:,}")
return required_samples
def generate_balanced_samples(df, required_samples):
"""Generate samples maintaining original class distribution ratios"""
logger.info("\nGenerating balanced samples...")
# Get English samples
en_df = df[df['lang'] == 'en']
labels = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']
# Calculate target counts for each label
target_counts = {}
for label in labels:
count = en_df[label].sum()
ratio = count / len(en_df)
target_count = int(ratio * required_samples)
target_counts[label] = target_count
logger.info(f"Target count for {label}: {target_count:,}")
augmented_samples = []
augmenter = ToxicAugmenter()
total_generated = 0
# Generate samples for each label
for label, target_count in target_counts.items():
if target_count == 0:
continue
logger.info(f"\nGenerating {target_count:,} samples for {label}")
# Get seed texts with this label
seed_texts = en_df[en_df[label] == 1]['comment_text'].tolist()
if not seed_texts:
logger.warning(f"No seed texts found for {label}, skipping...")
continue
# Generate samples with 5-minute timeout
new_samples = augmenter.augment_dataset(
target_samples=target_count,
label=label, # Using single label instead of label_combo
seed_texts=seed_texts,
timeout_minutes=5
)
if new_samples is not None and not new_samples.empty:
augmented_samples.append(new_samples)
total_generated += len(new_samples)
# Log progress
logger.info(f"✓ Generated {len(new_samples):,} samples")
logger.info(f"Progress: {total_generated:,}/{required_samples:,}")
# Check if we have reached our global required samples
if total_generated >= required_samples:
logger.info("Reached required sample count, stopping generation")
break
# Combine all generated samples
if augmented_samples:
augmented_df = pd.concat(augmented_samples, ignore_index=True)
augmented_df['lang'] = 'en'
# Ensure we don't exceed the required sample count
if len(augmented_df) > required_samples:
logger.info(f"Trimming excess samples from {len(augmented_df):,} to {required_samples:,}")
augmented_df = augmented_df.head(required_samples)
# Log final class distribution
logger.info("\nFinal class distribution in generated samples:")
for label in labels:
count = augmented_df[label].sum()
percentage = (count / len(augmented_df)) * 100
logger.info(f"{label}: {count:,} ({percentage:.2f}%)")
# Also log clean samples
clean_count = len(augmented_df[augmented_df[labels].sum(axis=1) == 0])
clean_percentage = (clean_count / len(augmented_df)) * 100
logger.info(f"Clean samples: {clean_count:,} ({clean_percentage:.2f}%)")
return augmented_df
else:
raise Exception("Failed to generate any valid samples")
def balance_english_data():
"""Main function to balance English data with other languages"""
try:
# Load dataset
input_file = 'dataset/processed/MULTILINGUAL_TOXIC_DATASET_360K_7LANG_FINAL.csv'
logger.info(f"Loading dataset from {input_file}")
df = pd.read_csv(input_file)
# Analyze current distribution
logger.info("\nAnalyzing current distribution...")
initial_dist = analyze_language_distribution(df)
initial_label_dist = analyze_label_distribution(df, 'en')
# Calculate required samples
required_samples = calculate_required_samples(df)
if required_samples <= 0:
logger.info("English data is already balanced. No augmentation needed.")
return
# Generate balanced samples
augmented_df = generate_balanced_samples(df, required_samples)
# Merge with original dataset
logger.info("\nMerging datasets...")
output_file = 'dataset/processed/MULTILINGUAL_TOXIC_DATASET_BALANCED.csv'
# Combine datasets
combined_df = pd.concat([df, augmented_df], ignore_index=True)
# Save balanced dataset
combined_df.to_csv(output_file, index=False)
logger.info(f"\nSaved balanced dataset to {output_file}")
# Final distribution check
logger.info("\nFinal distribution after balancing:")
final_dist = analyze_language_distribution(combined_df)
final_label_dist = analyze_label_distribution(combined_df, 'en')
# Save distribution statistics
stats = {
'timestamp': timestamp,
'initial_distribution': {
'languages': initial_dist.to_dict(),
'english_labels': initial_label_dist
},
'final_distribution': {
'languages': final_dist.to_dict(),
'english_labels': final_label_dist
},
'samples_generated': len(augmented_df),
'total_samples': len(combined_df)
}
stats_file = f'logs/balance_stats_{timestamp}.json'
with open(stats_file, 'w') as f:
json.dump(stats, f, indent=2)
logger.info(f"\nSaved balancing statistics to {stats_file}")
except Exception as e:
logger.error(f"Error during balancing: {str(e)}")
raise
def main():
balance_english_data()
if __name__ == "__main__":
logger.info("Starting English data balancing process...")
main() |