File size: 10,054 Bytes
d187b57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import gradio as gr
import torch
import numpy as np
import os
import json
from model.inference_optimized import OptimizedToxicityClassifier
import matplotlib.pyplot as plt
from typing import List, Dict
import langid
import pandas as pd

# Configure paths
ONNX_MODEL_PATH = os.environ.get("ONNX_MODEL_PATH", "weights/toxic_classifier.onnx")
PYTORCH_MODEL_PATH = os.environ.get("PYTORCH_MODEL_PATH", "weights/toxic_classifier_xlm-roberta-large/pytorch_model.bin")
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# Supported languages
SUPPORTED_LANGUAGES = {
    'en': 'English',
    'ru': 'Russian',
    'tr': 'Turkish',
    'es': 'Spanish',
    'fr': 'French',
    'it': 'Italian',
    'pt': 'Portuguese'
}

# Initialize classifier
try:
    if os.path.exists(ONNX_MODEL_PATH):
        classifier = OptimizedToxicityClassifier(onnx_path=ONNX_MODEL_PATH, device=DEVICE)
        print(f"Loaded ONNX model from {ONNX_MODEL_PATH}")
    else:
        classifier = OptimizedToxicityClassifier(pytorch_path=PYTORCH_MODEL_PATH, device=DEVICE)
        print(f"Loaded PyTorch model from {PYTORCH_MODEL_PATH}")
except Exception as e:
    print(f"Error loading model: {str(e)}")
    classifier = None

def detect_language(text: str) -> str:
    """Detect language of input text"""
    try:
        lang, _ = langid.classify(text)
        return lang if lang in SUPPORTED_LANGUAGES else 'en'
    except:
        return 'en'

def predict_toxicity(text: str, selected_language: str = None) -> Dict:
    """Predict toxicity of input text"""
    if not text or not text.strip():
        return {
            "error": "Please enter some text to analyze.",
            "html_result": "<div class='error'>Please enter some text to analyze.</div>"
        }
        
    if classifier is None:
        return {
            "error": "Model not loaded. Please check logs.",
            "html_result": "<div class='error'>Model not loaded. Please check logs.</div>"
        }
    
    # Detect language if not specified
    if not selected_language or selected_language == "Auto-detect":
        lang_code = detect_language(text)
        detected = True
    else:
        # Convert from display name to code
        lang_code = next((code for code, name in SUPPORTED_LANGUAGES.items() 
                         if name == selected_language), 'en')
        detected = False
    
    # Run prediction
    try:
        results = classifier.predict([text], langs=[lang_code])[0]
        
        # Format probabilities for display
        probs = results["probabilities"]
        sorted_categories = sorted(
            [(label, probs[label]) for label in probs], 
            key=lambda x: x[1], 
            reverse=True
        )
        
        # Create bar chart
        fig, ax = plt.subplots(figsize=(10, 6))
        labels = [label.replace('_', ' ').title() for label, _ in sorted_categories]
        values = [prob * 100 for _, prob in sorted_categories]
        colors = ['#ff6b6b' if val >= 50 else '#74c0fc' for val in values]
        
        ax.barh(labels, values, color=colors)
        ax.set_xlim(0, 100)
        ax.set_xlabel('Probability (%)')
        ax.set_title('Toxicity Analysis')
        ax.grid(axis='x', linestyle='--', alpha=0.7)
        
        # Annotate values
        for i, v in enumerate(values):
            ax.text(v + 1, i, f'{v:.1f}%', va='center')
            
        # Create HTML result
        lang_display = SUPPORTED_LANGUAGES.get(lang_code, lang_code)
        overall_result = "TOXIC" if results["is_toxic"] else "NON-TOXIC"
        result_color = "#ff6b6b" if results["is_toxic"] else "#66d9e8"
        
        html_result = f"""
        <div style='margin-bottom: 20px;'>
            <h2>Analysis Result: <span style='color: {result_color};'>{overall_result}</span></h2>
            <h3>Language: {lang_display} {'(detected)' if detected else ''}</h3>
        </div>
        <div style='margin-bottom: 10px;'>
            <table width='100%' style='border-collapse: collapse;'>
                <tr style='background-color: #e9ecef; font-weight: bold;'>
                    <th style='padding: 8px; text-align: left; border: 1px solid #dee2e6;'>Category</th>
                    <th style='padding: 8px; text-align: right; border: 1px solid #dee2e6;'>Probability</th>
                    <th style='padding: 8px; text-align: center; border: 1px solid #dee2e6;'>Status</th>
                </tr>
        """
        
        # Add rows for each toxicity category
        for label, prob in sorted_categories:
            formatted_label = label.replace('_', ' ').title()
            status = "DETECTED" if prob >= 0.5 else "Not Detected"
            status_color = "#ff6b6b" if prob >= 0.5 else "#66d9e8"
            prob_percent = f"{prob * 100:.1f}%"
            
            html_result += f"""
                <tr>
                    <td style='padding: 8px; border: 1px solid #dee2e6;'>{formatted_label}</td>
                    <td style='padding: 8px; text-align: right; border: 1px solid #dee2e6;'>{prob_percent}</td>
                    <td style='padding: 8px; text-align: center; border: 1px solid #dee2e6; color: {status_color}; font-weight: bold;'>{status}</td>
                </tr>
            """
        
        html_result += "</table></div>"
        
        # Add detected categories if toxic
        if results["is_toxic"]:
            toxic_categories = [cat.replace('_', ' ').title() for cat in results["toxic_categories"]]
            categories_list = ", ".join(toxic_categories)
            html_result += f"""
            <div style='margin-top: 10px;'>
                <p><strong>Detected toxic categories:</strong> {categories_list}</p>
            </div>
            """
        
        return {
            "prediction": results,
            "html_result": html_result,
            "fig": fig
        }
        
    except Exception as e:
        import traceback
        traceback.print_exc()
        return {
            "error": f"Error processing text: {str(e)}",
            "html_result": f"<div class='error'>Error processing text: {str(e)}</div>"
        }

def create_app():
    """Create and configure the Gradio interface"""
    # Create language dropdown options
    language_options = ["Auto-detect"] + list(SUPPORTED_LANGUAGES.values())
    
    # Define the interface
    with gr.Blocks(css="""
        .error { color: #ff6b6b; font-weight: bold; padding: 10px; border: 1px solid #ff6b6b; }
        .container { margin: 0 auto; max-width: 900px; }
        .gradio-container { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; }
        .example-text { font-style: italic; color: #666; }
    """) as app:
        gr.Markdown("""
        # Multilingual Toxic Comment Classifier
        This app analyzes text for different types of toxicity across multiple languages. 
        Enter your text, select a language (or let it auto-detect), and click 'Analyze'.
        
        Supported languages: English, Russian, Turkish, Spanish, French, Italian, Portuguese
        """)
        
        with gr.Row():
            with gr.Column(scale=3):
                text_input = gr.Textbox(
                    label="Enter text to analyze",
                    placeholder="Type or paste text here...",
                    lines=5
                )
                lang_dropdown = gr.Dropdown(
                    choices=language_options,
                    value="Auto-detect",
                    label="Language"
                )
                analyze_btn = gr.Button("Analyze", variant="primary")
            
            with gr.Column(scale=2):
                gr.Markdown("### Example texts:")
                with gr.Accordion("English example"):
                    en_example_btn = gr.Button("Use English example")
                with gr.Accordion("Spanish example"):
                    es_example_btn = gr.Button("Use Spanish example")
                with gr.Accordion("French example"):
                    fr_example_btn = gr.Button("Use French example")
        
        # Examples
        en_example_text = "You are such an idiot, nobody likes your stupid content."
        es_example_text = "Eres un completo idiota y nadie te quiere."
        fr_example_text = "Tu es tellement stupide, personne n'aime ton contenu minable."
        
        en_example_btn.click(
            lambda: en_example_text, 
            outputs=text_input
        )
        es_example_btn.click(
            lambda: es_example_text, 
            outputs=text_input
        )
        fr_example_btn.click(
            lambda: fr_example_text, 
            outputs=text_input
        )
        
        # Output components
        result_html = gr.HTML(label="Analysis Result")
        plot_output = gr.Plot(label="Toxicity Probabilities")
        
        # Set up event handling
        analyze_btn.click(
            predict_toxicity,
            inputs=[text_input, lang_dropdown],
            outputs=[result_html, plot_output]
        )
        
        # Also analyze on pressing Enter in the text box
        text_input.submit(
            predict_toxicity,
            inputs=[text_input, lang_dropdown],
            outputs=[result_html, plot_output]
        )
        
        gr.Markdown("""
        ### About this model
        This model classifies text into six toxicity categories:
        - **Toxic**: General toxicity
        - **Severe Toxic**: Extreme toxicity
        - **Obscene**: Obscene content
        - **Threat**: Threatening content
        - **Insult**: Insulting content
        - **Identity Hate**: Identity-based hate
        
        Built using XLM-RoBERTa with language-aware fine-tuning.
        """)
    
    return app

# Launch the app when script is run directly
if __name__ == "__main__":
    # Create and launch the app
    app = create_app()
    app.launch(
        server_name="0.0.0.0",  # Bind to all interfaces
        server_port=7860,       # Default Gradio port
        share=True              # Generate public link
    )