File size: 13,273 Bytes
d187b57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
#!/usr/bin/env python3
import pandas as pd
import numpy as np
from sklearn.model_selection import StratifiedKFold
from pathlib import Path
import json
from collections import defaultdict
import logging
from typing import Dict, Tuple, Set
import time
from itertools import combinations
import hashlib
from tqdm import tqdm

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)

TOXICITY_COLUMNS = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']
RARE_CLASSES = ['threat', 'identity_hate']
MIN_SAMPLES_PER_CLASS = 1000  # Minimum samples required per class per language

def create_multilabel_stratification_labels(row: pd.Series) -> str:
    """
    Create composite labels that preserve multi-label patterns and language distribution.
    Uses iterative label combination to capture co-occurrence patterns.
    """
    # Create base label from language
    label = str(row['lang'])
    
    # Add individual class information
    for col in TOXICITY_COLUMNS:
        label += '_' + str(int(row[col]))
    
    # Add co-occurrence patterns for pairs of classes
    for c1, c2 in combinations(RARE_CLASSES, 2):
        co_occur = int(row[c1] == 1 and row[c2] == 1)
        label += '_' + str(co_occur)
    
    return label

def oversample_rare_classes(df: pd.DataFrame) -> pd.DataFrame:
    """
    Perform intelligent oversampling of rare classes while maintaining language distribution.
    """
    oversampled_dfs = []
    original_df = df.copy()
    
    # Process each language separately
    for lang in df['lang'].unique():
        lang_df = df[df['lang'] == lang]
        
        for rare_class in RARE_CLASSES:
            class_samples = lang_df[lang_df[rare_class] == 1]
            target_samples = MIN_SAMPLES_PER_CLASS
            
            if len(class_samples) < target_samples:
                # Calculate number of samples needed
                n_samples = target_samples - len(class_samples)
                
                # Oversample with small random variations
                noise = np.random.normal(0, 0.1, (n_samples, len(TOXICITY_COLUMNS)))
                oversampled = class_samples.sample(n_samples, replace=True)
                
                # Add noise to continuous values while keeping binary values intact
                for col in TOXICITY_COLUMNS:
                    if col in [rare_class] + [c for c in RARE_CLASSES if c != rare_class]:
                        continue  # Preserve original binary values for rare classes
                    oversampled[col] = np.clip(
                        oversampled[col].values + noise[:, TOXICITY_COLUMNS.index(col)],
                        0, 1
                    )
                
                oversampled_dfs.append(oversampled)
    
    if oversampled_dfs:
        return pd.concat([original_df] + oversampled_dfs, axis=0).reset_index(drop=True)
    return original_df

def verify_distributions(
    original_df: pd.DataFrame,
    train_df: pd.DataFrame,
    val_df: pd.DataFrame,
    test_df: pd.DataFrame = None
) -> Dict:
    """
    Enhanced verification of distributions across splits with detailed metrics.
    """
    splits = {
        'original': original_df,
        'train': train_df,
        'val': val_df
    }
    if test_df is not None:
        splits['test'] = test_df
    
    stats = defaultdict(dict)
    
    for split_name, df in splits.items():
        # Language distribution
        stats[split_name]['language_dist'] = df['lang'].value_counts(normalize=True).to_dict()
        
        # Per-language class distributions
        lang_class_dist = {}
        for lang in df['lang'].unique():
            lang_df = df[df['lang'] == lang]
            lang_class_dist[lang] = {
                col: {
                    'positive_ratio': lang_df[col].mean(),
                    'count': int(lang_df[col].sum()),
                    'total': len(lang_df)
                } for col in TOXICITY_COLUMNS
            }
        stats[split_name]['lang_class_dist'] = lang_class_dist
        
        # Multi-label co-occurrence patterns
        cooccurrence = {}
        for c1, c2 in combinations(TOXICITY_COLUMNS, 2):
            cooccur_count = ((df[c1] == 1) & (df[c2] == 1)).sum()
            cooccurrence[f"{c1}_{c2}"] = {
                'count': int(cooccur_count),
                'ratio': float(cooccur_count) / len(df)
            }
        stats[split_name]['cooccurrence_patterns'] = cooccurrence
        
        # Distribution deltas from original
        if split_name != 'original':
            deltas = {}
            for lang in df['lang'].unique():
                for col in TOXICITY_COLUMNS:
                    orig_ratio = splits['original'][splits['original']['lang'] == lang][col].mean()
                    split_ratio = df[df['lang'] == lang][col].mean()
                    deltas[f"{lang}_{col}"] = abs(orig_ratio - split_ratio)
            stats[split_name]['distribution_deltas'] = deltas
    
    return stats

def check_contamination(
    train_df: pd.DataFrame,
    val_df: pd.DataFrame,
    test_df: pd.DataFrame = None
) -> Dict:
    """
    Enhanced contamination check including text similarity detection.
    """
    # Determine the correct text column name
    text_column = 'comment_text' if 'comment_text' in train_df.columns else 'text'
    if text_column not in train_df.columns:
        logging.warning("No text column found for contamination check. Skipping text-based contamination detection.")
        return {'exact_matches': {'train_val': 0.0}}
    
    def get_text_hash_set(df: pd.DataFrame) -> Set[str]:
        return set(df[text_column].str.lower().str.strip().values)
    
    contamination = {
        'exact_matches': {
            'train_val': len(get_text_hash_set(train_df) & get_text_hash_set(val_df)) / len(train_df)
        }
    }
    
    if test_df is not None:
        contamination['exact_matches'].update({
            'train_test': len(get_text_hash_set(train_df) & get_text_hash_set(test_df)) / len(train_df),
            'val_test': len(get_text_hash_set(val_df) & get_text_hash_set(test_df)) / len(val_df)
        })
    
    return contamination

def split_dataset(
    df: pd.DataFrame,
    seed: int,
    split_mode: str
) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
    """
    Perform stratified splitting of the dataset.
    """
    # Create stratification labels
    logging.info("Creating stratification labels...")
    stratify_labels = df.apply(create_multilabel_stratification_labels, axis=1)
    
    # Oversample rare classes in training data only
    logging.info("Oversampling rare classes...")
    df_with_oversampling = oversample_rare_classes(df)
    
    # Initialize splits
    if split_mode == '3':
        # First split: 80% train, 20% temp
        splitter = StratifiedKFold(n_splits=5, shuffle=True, random_state=seed)
        train_idx, temp_idx = next(splitter.split(df, stratify_labels))
        
        # Second split: 10% val, 10% test from temp
        temp_df = df.iloc[temp_idx]
        temp_labels = stratify_labels.iloc[temp_idx]
        
        splitter = StratifiedKFold(n_splits=2, shuffle=True, random_state=seed)
        val_idx, test_idx = next(splitter.split(temp_df, temp_labels))
        
        # Create final splits
        train_df = df_with_oversampling.iloc[train_idx]  # Use oversampled data for training
        val_df = df.iloc[temp_idx].iloc[val_idx]  # Use original data for validation
        test_df = df.iloc[temp_idx].iloc[test_idx]  # Use original data for testing
        
    else:  # 2-way split
        splitter = StratifiedKFold(n_splits=10, shuffle=True, random_state=seed)
        train_idx, val_idx = next(splitter.split(df, stratify_labels))
        
        train_df = df_with_oversampling.iloc[train_idx]  # Use oversampled data for training
        val_df = df.iloc[val_idx]  # Use original data for validation
        test_df = None
    
    return train_df, val_df, test_df

def save_splits(
    train_df: pd.DataFrame,
    val_df: pd.DataFrame,
    test_df: pd.DataFrame,
    output_dir: str,
    stats: Dict
) -> None:
    """
    Save splits and statistics to files.
    """
    # Create output directory
    output_path = Path(output_dir)
    output_path.mkdir(parents=True, exist_ok=True)
    
    # Save splits
    logging.info("Saving splits...")
    train_df.to_csv(output_path / 'train.csv', index=False)
    val_df.to_csv(output_path / 'val.csv', index=False)
    if test_df is not None:
        test_df.to_csv(output_path / 'test.csv', index=False)
    
    # Save statistics
    with open(output_path / 'stats.json', 'w', encoding='utf-8') as f:
        json.dump(stats, f, indent=2, ensure_ascii=False)

def compute_text_hash(text: str) -> str:
    """
    Compute SHA-256 hash of normalized text.
    """
    # Normalize text by removing extra whitespace and converting to lowercase
    normalized = ' '.join(str(text).lower().split())
    return hashlib.sha256(normalized.encode('utf-8')).hexdigest()

def deduplicate_dataset(df: pd.DataFrame) -> Tuple[pd.DataFrame, Dict]:
    """
    Remove duplicates using cryptographic hashing while preserving metadata.
    """
    logging.info("Starting cryptographic deduplication...")
    
    # Determine text column
    text_column = 'comment_text' if 'comment_text' in df.columns else 'text'
    if text_column not in df.columns:
        raise ValueError(f"No text column found. Available columns: {df.columns}")
    
    # Compute hashes with progress bar
    logging.info("Computing cryptographic hashes...")
    tqdm.pandas(desc="Hashing texts")
    df['text_hash'] = df[text_column].progress_apply(compute_text_hash)
    
    # Get duplicate statistics before removal
    total_samples = len(df)
    duplicate_hashes = df[df.duplicated('text_hash', keep=False)]['text_hash'].unique()
    duplicate_groups = {
        hash_val: df[df['text_hash'] == hash_val].index.tolist() 
        for hash_val in duplicate_hashes
    }
    
    # Keep first occurrence of each text while tracking duplicates
    dedup_df = df.drop_duplicates('text_hash', keep='first').copy()
    dedup_df = dedup_df.drop('text_hash', axis=1)
    
    # Compile deduplication statistics
    dedup_stats = {
        'total_samples': total_samples,
        'unique_samples': len(dedup_df),
        'duplicates_removed': total_samples - len(dedup_df),
        'duplicate_rate': (total_samples - len(dedup_df)) / total_samples,
        'duplicate_groups': {
            str(k): {
                'count': len(v),
                'indices': v
            }
            for k, v in duplicate_groups.items()
        }
    }
    
    logging.info(f"Removed {dedup_stats['duplicates_removed']:,} duplicates "
                f"({dedup_stats['duplicate_rate']:.2%} of dataset)")
    
    return dedup_df, dedup_stats

def main():
    input_csv = 'dataset/processed/MULTILINGUAL_TOXIC_DATASET_AUGMENTED.csv'
    output_dir = 'dataset/split'
    seed = 42
    split_mode = '3'
    
    start_time = time.time()
    
    # Load dataset
    logging.info(f"Loading dataset from {input_csv}...")
    df = pd.read_csv(input_csv)
    
    # Print column names for debugging
    logging.info(f"Available columns: {', '.join(df.columns)}")
    
    # Verify required columns
    required_columns = ['lang'] + TOXICITY_COLUMNS
    missing_columns = [col for col in required_columns if col not in df.columns]
    if missing_columns:
        raise ValueError(f"Missing required columns: {missing_columns}")
    
    # Perform deduplication
    df, dedup_stats = deduplicate_dataset(df)
    
    # Perform splitting
    logging.info("Performing stratified split...")
    train_df, val_df, test_df = split_dataset(df, seed, split_mode)
    
    # Verify distributions
    logging.info("Verifying distributions...")
    stats = verify_distributions(df, train_df, val_df, test_df)
    
    # Add deduplication stats
    stats['deduplication'] = dedup_stats
    
    # Check contamination
    logging.info("Checking for contamination...")
    contamination = check_contamination(train_df, val_df, test_df)
    stats['contamination'] = contamination
    
    # Save everything
    logging.info(f"Saving splits to {output_dir}...")
    save_splits(train_df, val_df, test_df, output_dir, stats)
    
    elapsed_time = time.time() - start_time
    logging.info(f"Done! Elapsed time: {elapsed_time:.2f} seconds")
    
    # Print summary
    print("\nDeduplication Summary:")
    print("-" * 50)
    print(f"Original samples: {dedup_stats['total_samples']:,}")
    print(f"Unique samples: {dedup_stats['unique_samples']:,}")
    print(f"Duplicates removed: {dedup_stats['duplicates_removed']:,} ({dedup_stats['duplicate_rate']:.2%})")
    
    print("\nSplit Summary:")
    print("-" * 50)
    print(f"Total samples: {len(df):,}")
    print(f"Train samples: {len(train_df):,} ({len(train_df)/len(df)*100:.1f}%)")
    print(f"Validation samples: {len(val_df):,} ({len(val_df)/len(df)*100:.1f}%)")
    if test_df is not None:
        print(f"Test samples: {len(test_df):,} ({len(test_df)/len(df)*100:.1f}%)")
    print("\nDetailed statistics saved to stats.json")

if __name__ == "__main__":
    main()