File size: 6,131 Bytes
d187b57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, auc
import os
import json
from pathlib import Path

def plot_roc_curves(predictions_path, output_dir=None):
    """
    Plot ROC curves from model predictions
    
    Args:
        predictions_path (str): Path to the .npz file containing predictions
        output_dir (str, optional): Directory to save plots. If None, will use same directory as predictions
    """
    # Load predictions
    data = np.load(predictions_path)
    predictions = data['predictions']
    labels = data['labels']
    langs = data['langs']
    
    # Create output directory
    if output_dir is None:
        output_dir = os.path.dirname(predictions_path)
    plots_dir = os.path.join(output_dir, 'plots')
    os.makedirs(plots_dir, exist_ok=True)
    
    # Define toxicity types
    toxicity_types = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']
    
    # Define language mapping
    id_to_lang = {
        0: 'English (en)',
        1: 'Russian (ru)',
        2: 'Turkish (tr)',
        3: 'Spanish (es)',
        4: 'French (fr)',
        5: 'Italian (it)',
        6: 'Portuguese (pt)'
    }
    
    # Plot overall ROC curves (one per class)
    plt.figure(figsize=(10, 8))
    for i, class_name in enumerate(toxicity_types):
        fpr, tpr, _ = roc_curve(labels[:, i], predictions[:, i])
        roc_auc = auc(fpr, tpr)
        
        plt.plot(fpr, tpr, label=f'{class_name} (AUC = {roc_auc:.3f})')
    
    plt.plot([0, 1], [0, 1], 'k--', label='Random')
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('ROC Curves - All Classes')
    plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
    plt.grid(True)
    plt.tight_layout()
    plt.savefig(os.path.join(plots_dir, 'roc_all_classes.png'), dpi=300, bbox_inches='tight')
    plt.close()
    
    # Plot per-class ROC curves with confidence intervals
    n_bootstrap = 1000
    n_classes = len(toxicity_types)
    
    for i, class_name in enumerate(toxicity_types):
        plt.figure(figsize=(8, 6))
        
        # Calculate main ROC curve
        fpr, tpr, _ = roc_curve(labels[:, i], predictions[:, i])
        roc_auc = auc(fpr, tpr)
        
        # Plot main curve
        plt.plot(fpr, tpr, 'b-', label=f'ROC (AUC = {roc_auc:.3f})')
        
        # Bootstrap for confidence intervals
        tprs = []
        aucs = []
        mean_fpr = np.linspace(0, 1, 100)
        
        for _ in range(n_bootstrap):
            # Bootstrap sample indices
            indices = np.random.randint(0, len(labels), len(labels))
            if len(np.unique(labels[indices, i])) < 2:
                continue
                
            # Calculate ROC curve
            fpr, tpr, _ = roc_curve(labels[indices, i], predictions[indices, i])
            
            # Interpolate TPR at mean FPR points
            interp_tpr = np.interp(mean_fpr, fpr, tpr)
            interp_tpr[0] = 0.0
            tprs.append(interp_tpr)
            aucs.append(auc(fpr, tpr))
        
        # Calculate confidence intervals
        tprs = np.array(tprs)
        mean_tpr = np.mean(tprs, axis=0)
        std_tpr = np.std(tprs, axis=0)
        
        tprs_upper = np.minimum(mean_tpr + std_tpr, 1)
        tprs_lower = np.maximum(mean_tpr - std_tpr, 0)
        
        # Plot confidence interval
        plt.fill_between(mean_fpr, tprs_lower, tprs_upper, color='grey', alpha=.2,
                        label=f'±1 std. dev.')
        
        # Calculate AUC confidence interval
        auc_mean = np.mean(aucs)
        auc_std = np.std(aucs)
        plt.plot([], [], ' ', label=f'AUC = {auc_mean:.3f} ± {auc_std:.3f}')
        
        plt.plot([0, 1], [0, 1], 'k--', label='Random')
        plt.xlabel('False Positive Rate')
        plt.ylabel('True Positive Rate')
        plt.title(f'ROC Curve - {class_name}')
        plt.legend(loc='lower right')
        plt.grid(True)
        plt.tight_layout()
        plt.savefig(os.path.join(plots_dir, f'roc_{class_name}.png'), dpi=300)
        plt.close()
    
    # Plot per-language ROC curves (for toxic class)
    plt.figure(figsize=(10, 8))
    for lang_id, lang_name in id_to_lang.items():
        # Get samples for this language
        lang_mask = langs == lang_id
        if lang_mask.sum() > 0 and len(np.unique(labels[lang_mask, 0])) > 1:
            fpr, tpr, _ = roc_curve(labels[lang_mask, 0], predictions[lang_mask, 0])
            roc_auc = auc(fpr, tpr)
            plt.plot(fpr, tpr, label=f'{lang_name} (AUC = {roc_auc:.3f})')
    
    plt.plot([0, 1], [0, 1], 'k--', label='Random')
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('ROC Curves by Language - Toxic Class')
    plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
    plt.grid(True)
    plt.tight_layout()
    plt.savefig(os.path.join(plots_dir, 'roc_by_language.png'), dpi=300, bbox_inches='tight')
    plt.close()
    
    print(f"\nROC curves have been saved to {plots_dir}")
    print("\nGenerated plots:")
    print("1. roc_all_classes.png - ROC curves for all toxicity classes")
    print("2. roc_[class_name].png - Individual ROC curves with confidence intervals for each class")
    print("3. roc_by_language.png - ROC curves for each language (toxic class)")

if __name__ == '__main__':
    # Use the latest evaluation results
    eval_dir = 'evaluation_results'
    if os.path.exists(eval_dir):
        # Find most recent evaluation directory
        eval_dirs = sorted([d for d in os.listdir(eval_dir) if d.startswith('eval_')], reverse=True)
        if eval_dirs:
            latest_eval = os.path.join(eval_dir, eval_dirs[0])
            predictions_path = os.path.join(latest_eval, 'predictions.npz')
            if os.path.exists(predictions_path):
                plot_roc_curves(predictions_path)
            else:
                print(f"No predictions file found in {latest_eval}")
        else:
            print(f"No evaluation directories found in {eval_dir}")
    else:
        print(f"Evaluation directory {eval_dir} not found")