DeepMount00 commited on
Commit
7f83a82
ยท
verified ยท
1 Parent(s): 9de9507

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +115 -38
README.md CHANGED
@@ -1,41 +1,118 @@
1
- # Alireo-400M Model Card ๐Ÿ“š
2
-
3
- ## Model Description
4
- Alireo-400M is a lightweight yet powerful Italian language model with 400M parameters, designed to provide efficient natural language processing capabilities while maintaining a smaller footprint compared to larger models.
5
-
6
- ## Key Features
7
- - **Architecture**: Transformer-based language model
8
- - **Parameters**: 400M
9
- - **Context Window**: 8K tokens
10
- - **Training Data**: Curated Italian text corpus (books, articles, web content)
11
- - **Model Size**: ~800MB
12
-
13
- ## Performance
14
- Despite its compact size, Alireo-400M demonstrates impressive performance:
15
- - Outperforms Qwen 0.5B across multiple benchmarks
16
- - Maintains high accuracy in Italian language understanding tasks
17
- - Efficient inference speed due to optimized architecture
18
-
19
- ## Limitations
20
- - Limited context window compared to larger models
21
- - May struggle with highly specialized technical content
22
- - Performance may vary on dialectal variations
23
- - Not suitable for multilingual tasks
24
-
25
- ## Hardware Requirements
26
- - Minimum RAM: 2GB
27
- - Recommended RAM: 4GB
28
- - GPU: Optional, but recommended for faster inference
29
- - Disk Space: ~1GB (including model and dependencies)
30
-
31
- ## License
32
- Apache 2.0
33
-
34
- ## Citation
35
- ```bibtex
36
- @software{alireo2024,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  author = {[Michele Montebovi]},
38
  title = {Alireo-400M: A Lightweight Italian Language Model},
39
  year = {2024},
40
- }
41
- ```
 
 
 
1
+ <!DOCTYPE html>
2
+ <html lang="en">
3
+ <head>
4
+ <style>
5
+ body {
6
+ font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
7
+ line-height: 1.6;
8
+ max-width: 800px;
9
+ margin: 0 auto;
10
+ padding: 20px;
11
+ background-color: #f5f5f5;
12
+ }
13
+ .container {
14
+ background-color: white;
15
+ padding: 30px;
16
+ border-radius: 10px;
17
+ box-shadow: 0 2px 4px rgba(0,0,0,0.1);
18
+ }
19
+ h1 {
20
+ color: #2c3e50;
21
+ border-bottom: 2px solid #3498db;
22
+ padding-bottom: 10px;
23
+ margin-bottom: 30px;
24
+ }
25
+ h2 {
26
+ color: #2980b9;
27
+ margin-top: 25px;
28
+ }
29
+ .features-list {
30
+ background-color: #f8f9fa;
31
+ padding: 20px;
32
+ border-radius: 5px;
33
+ border-left: 4px solid #3498db;
34
+ }
35
+ .citation {
36
+ background-color: #f8f9fa;
37
+ padding: 15px;
38
+ border-radius: 5px;
39
+ font-family: monospace;
40
+ white-space: pre-wrap;
41
+ }
42
+ .performance {
43
+ margin: 20px 0;
44
+ }
45
+ .limitations {
46
+ background-color: #fff3f3;
47
+ padding: 20px;
48
+ border-radius: 5px;
49
+ border-left: 4px solid #e74c3c;
50
+ }
51
+ .requirements {
52
+ background-color: #f0f9ff;
53
+ padding: 20px;
54
+ border-radius: 5px;
55
+ border-left: 4px solid #2ecc71;
56
+ }
57
+ </style>
58
+ </head>
59
+ <body>
60
+ <div class="container">
61
+ <h1>๐Ÿค– Alireo-400M Model Card</h1>
62
+
63
+ <h2>๐Ÿ“ Model Description</h2>
64
+ <p>Alireo-400M is a lightweight yet powerful Italian language model with 400M parameters, designed to provide efficient natural language processing capabilities while maintaining a smaller footprint compared to larger models.</p>
65
+
66
+ <h2>โœจ Key Features</h2>
67
+ <div class="features-list">
68
+ <ul>
69
+ <li>๐Ÿ—๏ธ <strong>Architecture:</strong> Transformer-based language model</li>
70
+ <li>๐Ÿ“Š <strong>Parameters:</strong> 400M</li>
71
+ <li>๐ŸชŸ <strong>Context Window:</strong> 8K tokens</li>
72
+ <li>๐Ÿ“š <strong>Training Data:</strong> Curated Italian text corpus (books, articles, web content)</li>
73
+ <li>๐Ÿ’พ <strong>Model Size:</strong> ~800MB</li>
74
+ </ul>
75
+ </div>
76
+
77
+ <h2>๐Ÿ“ˆ Performance</h2>
78
+ <div class="performance">
79
+ <p>Despite its compact size, Alireo-400M demonstrates impressive performance:</p>
80
+ <ul>
81
+ <li>๐Ÿ† Outperforms Qwen 0.5B across multiple benchmarks</li>
82
+ <li>๐ŸŽฏ Maintains high accuracy in Italian language understanding tasks</li>
83
+ <li>โšก Efficient inference speed due to optimized architecture</li>
84
+ </ul>
85
+ </div>
86
+
87
+ <h2>โš ๏ธ Limitations</h2>
88
+ <div class="limitations">
89
+ <ul>
90
+ <li>Limited context window compared to larger models</li>
91
+ <li>May struggle with highly specialized technical content</li>
92
+ <li>Performance may vary on dialectal variations</li>
93
+ <li>Not suitable for multilingual tasks</li>
94
+ </ul>
95
+ </div>
96
+
97
+ <h2>๐Ÿ’ป Hardware Requirements</h2>
98
+ <div class="requirements">
99
+ <ul>
100
+ <li>๐ŸŽฎ <strong>Minimum RAM:</strong> 2GB</li>
101
+ <li>๐Ÿ’ช <strong>Recommended RAM:</strong> 4GB</li>
102
+ <li>๐ŸŽจ <strong>GPU:</strong> Optional, but recommended for faster inference</li>
103
+ <li>๐Ÿ’ฟ <strong>Disk Space:</strong> ~1GB (including model and dependencies)</li>
104
+ </ul>
105
+ </div>
106
+
107
+ <h2>๐Ÿ“œ License</h2>
108
+ <p>Apache 2.0</p>
109
+
110
+ <h2>๐Ÿ“„ Citation</h2>
111
+ <div class="citation">@software{alireo2024,
112
  author = {[Michele Montebovi]},
113
  title = {Alireo-400M: A Lightweight Italian Language Model},
114
  year = {2024},
115
+ }</div>
116
+ </div>
117
+ </body>
118
+ </html>