--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-tiny tags: - hf-asr-leaderboard - generated_from_trainer datasets: - Japanese_english metrics: - wer model-index: - name: Whisper tiny Japanese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Japanese English type: Japanese_english args: 'config: default, split: test' metrics: - name: Wer type: wer value: 22.274436090225564 --- # Whisper tiny Japanese This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Japanese English dataset. It achieves the following results on the evaluation set: - Loss: 0.4847 - Wer: 22.2744 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.1914 | 1.2438 | 1000 | 0.4866 | 22.9167 | | 0.1464 | 2.4876 | 2000 | 0.4643 | 22.9010 | | 0.0722 | 3.7313 | 3000 | 0.4761 | 21.9455 | | 0.0503 | 4.9751 | 4000 | 0.4847 | 22.2744 | ### Framework versions - Transformers 4.50.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0