File size: 1,656 Bytes
abb0547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
---

library_name: transformers
license: apache-2.0
datasets:
- benchang1110/pretrainedtw
- HuggingFaceTB/cosmopedia-100k
language:
- zh
widget:
  - text: '在很久以前,這座島上'
    example_title: Example1

---


# Model Card for Model ID

This is a continue-pretrained version of [Tinyllama](TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) tailored for traditional Chinese. The continue-pretraining dataset contains roughly 2B tokens.

# Usage
```python

from transformers import AutoModelForCausalLM, AutoTokenizer

import torch



def generate_response(input):

    '''

    simple test for the model

    '''

    # tokenzize the input

    tokenized_input = tokenizer.encode_plus(input, return_tensors='pt').to(device)

    

    # generate the response

    outputs = model.generate(

        input_ids=tokenized_input['input_ids'], 

        attention_mask=tokenized_input['attention_mask'],

        pad_token_id=tokenizer.pad_token_id,

        do_sample=False,

        repetition_penalty=1.3,

        max_length=500

    )

    

    # decode the response

    return tokenizer.decode(outputs[0], skip_special_tokens=True)



if __name__ == '__main__':

    device = 'cuda' if torch.cuda.is_available() else 'cpu'

    model = AutoModelForCausalLM.from_pretrained("DavidLanz/Taiwan-tinyllama-v1.0-chat",device_map=device,torch_dtype=torch.bfloat16)

    tokenizer = AutoTokenizer.from_pretrained("DavidLanz/Taiwan-tinyllama-v1.0-chat")

    while(True):

        text = input("input a simple prompt:")

        print('System:', generate_response(text))

```
Using bfloat16, the VRAM required is around 3GB!!!