Update vit_model_test.py
Browse files- vit_model_test.py +12 -7
vit_model_test.py
CHANGED
@@ -10,13 +10,14 @@ from sklearn.metrics import accuracy_score, precision_score, confusion_matrix, f
|
|
10 |
import matplotlib.pyplot as plt
|
11 |
import seaborn as sns
|
12 |
|
13 |
-
# 驻讜谞拽爪讬讛
|
14 |
def display_video(video_url):
|
15 |
-
|
16 |
-
<
|
|
|
|
|
|
|
17 |
'''
|
18 |
-
# 讛谞讞 讗转 讛-HTML 讘讚砖讘讜专讚 砖诇讱
|
19 |
-
return video_html
|
20 |
|
21 |
def shuffle_and_split_data(dataframe, test_size=0.2, random_state=59):
|
22 |
shuffled_df = dataframe.sample(frac=1, random_state=random_state).reset_index(drop=True)
|
@@ -55,15 +56,19 @@ if __name__ == "__main__":
|
|
55 |
predicted_labels = []
|
56 |
|
57 |
# 拽讬砖讜专 诇住专讟讜谉
|
58 |
-
video_url = 'https://youtube.com/shorts/vGRq060nPYU?feature=share' # 讛讞诇讬驻讬 讻讗谉 注诐 讛-URL 砖诇 讛住专讟讜谉 砖诇讱
|
59 |
video_html = display_video(video_url)
|
60 |
|
61 |
# 讛专讗讬 讗转 讛住专讟讜谉 诇驻谞讬 讛讞讬讝讜讬
|
62 |
-
print(video_html) #
|
63 |
|
64 |
with torch.no_grad():
|
65 |
for images, labels in test_loader:
|
66 |
images, labels = images.to(device), labels.to(device)
|
|
|
|
|
|
|
|
|
67 |
outputs = model(images)
|
68 |
logits = outputs.logits # Extract logits from the output
|
69 |
_, predicted = torch.max(logits, 1)
|
|
|
10 |
import matplotlib.pyplot as plt
|
11 |
import seaborn as sns
|
12 |
|
13 |
+
# 驻讜谞拽爪讬讛 诇讛讞讝专转 HTML 砖诇 住专讟讜谉
|
14 |
def display_video(video_url):
|
15 |
+
return f'''
|
16 |
+
<video width="640" height="480" controls autoplay>
|
17 |
+
<source src="{video_url}" type="video/mp4">
|
18 |
+
Your browser does not support the video tag.
|
19 |
+
</video>
|
20 |
'''
|
|
|
|
|
21 |
|
22 |
def shuffle_and_split_data(dataframe, test_size=0.2, random_state=59):
|
23 |
shuffled_df = dataframe.sample(frac=1, random_state=random_state).reset_index(drop=True)
|
|
|
56 |
predicted_labels = []
|
57 |
|
58 |
# 拽讬砖讜专 诇住专讟讜谉
|
59 |
+
video_url = 'https://www.youtube.com/shorts/vGRq060nPYU?feature=share' # 讛讞诇讬驻讬 讻讗谉 注诐 讛-URL 砖诇 讛住专讟讜谉 砖诇讱
|
60 |
video_html = display_video(video_url)
|
61 |
|
62 |
# 讛专讗讬 讗转 讛住专讟讜谉 诇驻谞讬 讛讞讬讝讜讬
|
63 |
+
print(video_html) # 讝讛 讗诪讜专 诇讛爪讬讙 讗转 讛-HTML 讘讚砖讘讜专讚 砖诇讱
|
64 |
|
65 |
with torch.no_grad():
|
66 |
for images, labels in test_loader:
|
67 |
images, labels = images.to(device), labels.to(device)
|
68 |
+
|
69 |
+
# 讛专讗讛 讗转 讛住专讟讜谉 讘注转 讞讬讝讜讬
|
70 |
+
print(video_html) # 讛爪讙 讗转 讛-HTML 砖诇 讛住专讟讜谉
|
71 |
+
|
72 |
outputs = model(images)
|
73 |
logits = outputs.logits # Extract logits from the output
|
74 |
_, predicted = torch.max(logits, 1)
|