Commit
·
0dab8bf
1
Parent(s):
5a0e0a4
wow
Browse files- trained_model.pth +3 -0
- vit_model_original.py +148 -0
- vit_model_original_test.py +120 -0
trained_model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3975df5a443c080bba56efd8ffe56e10cb2d2ff08649b75892ae1a30d1bb9229
|
| 3 |
+
size 343282922
|
vit_model_original.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from torch.utils.data import Dataset, DataLoader
|
| 4 |
+
from torchvision import transforms
|
| 5 |
+
from transformers import ViTForImageClassification
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import torch.optim as optim
|
| 8 |
+
import os
|
| 9 |
+
import pandas as pd
|
| 10 |
+
from sklearn.model_selection import train_test_split
|
| 11 |
+
## working 18.5.24
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def labeling(path_real, path_fake):
|
| 15 |
+
image_paths = []
|
| 16 |
+
labels = []
|
| 17 |
+
|
| 18 |
+
for filename in os.listdir(path_real):
|
| 19 |
+
image_paths.append(os.path.join(path_real, filename))
|
| 20 |
+
labels.append(0)
|
| 21 |
+
|
| 22 |
+
for filename in os.listdir(path_fake):
|
| 23 |
+
image_paths.append(os.path.join(path_fake, filename))
|
| 24 |
+
labels.append(1)
|
| 25 |
+
|
| 26 |
+
dataset = pd.DataFrame({'image_path': image_paths, 'label': labels})
|
| 27 |
+
|
| 28 |
+
return dataset
|
| 29 |
+
|
| 30 |
+
class CustomDataset(Dataset):
|
| 31 |
+
def __init__(self, dataframe, transform=None):
|
| 32 |
+
self.dataframe = dataframe
|
| 33 |
+
self.transform = transform
|
| 34 |
+
|
| 35 |
+
def __len__(self):
|
| 36 |
+
return len(self.dataframe)
|
| 37 |
+
|
| 38 |
+
def __getitem__(self, idx):
|
| 39 |
+
image_path = self.dataframe.iloc[idx, 0] # Image path is in the first column
|
| 40 |
+
image = Image.open(image_path).convert('RGB') # Convert to RGB format
|
| 41 |
+
|
| 42 |
+
if self.transform:
|
| 43 |
+
image = self.transform(image)
|
| 44 |
+
|
| 45 |
+
label = self.dataframe.iloc[idx, 1] # Label is in the second column
|
| 46 |
+
return image, label
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def shuffle_and_split_data(dataframe, test_size=0.2, random_state=59):
|
| 52 |
+
# Shuffle the DataFrame
|
| 53 |
+
shuffled_df = dataframe.sample(frac=1, random_state=random_state).reset_index(drop=True)
|
| 54 |
+
|
| 55 |
+
# Split the DataFrame into train and validation sets
|
| 56 |
+
train_df, val_df = train_test_split(shuffled_df, test_size=test_size, random_state=random_state)
|
| 57 |
+
|
| 58 |
+
return train_df, val_df
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
if __name__ == "__main__":
|
| 62 |
+
# Check for GPU availability
|
| 63 |
+
device = torch.device('cuda')
|
| 64 |
+
|
| 65 |
+
# Load the pre-trained ViT model and move it to GPU
|
| 66 |
+
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224').to(device)
|
| 67 |
+
|
| 68 |
+
# Freeze pre-trained layers
|
| 69 |
+
for param in model.parameters():
|
| 70 |
+
param.requires_grad = False
|
| 71 |
+
|
| 72 |
+
# Define a new classifier and move it to GPU
|
| 73 |
+
model.classifier = nn.Linear(model.config.hidden_size, 2).to(device) # Two output classes: 'REAL' and 'FAKE'
|
| 74 |
+
|
| 75 |
+
print(model)
|
| 76 |
+
# Define the optimizer
|
| 77 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
| 78 |
+
|
| 79 |
+
# Define the image preprocessing pipeline
|
| 80 |
+
preprocess = transforms.Compose([
|
| 81 |
+
transforms.Resize((224, 224)),
|
| 82 |
+
transforms.ToTensor()
|
| 83 |
+
])
|
| 84 |
+
|
| 85 |
+
# Assuming you have already defined your dataset class and split it into training and validation sets
|
| 86 |
+
# Let's call it CustomDataset
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
train_real_folder = 'train/art/real'
|
| 91 |
+
train_fake_folder = 'train/art/fake'
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
train_dataset_df = labeling(train_real_folder, train_fake_folder)
|
| 98 |
+
|
| 99 |
+
train_dataset_df , val_dataset_df = shuffle_and_split_data(train_dataset_df)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
# Define the dataset and dataloaders
|
| 105 |
+
train_dataset = CustomDataset(train_dataset_df, transform=preprocess)
|
| 106 |
+
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
|
| 107 |
+
|
| 108 |
+
val_dataset = CustomDataset(val_dataset_df, transform=preprocess)
|
| 109 |
+
val_loader = DataLoader(val_dataset, batch_size=32)
|
| 110 |
+
|
| 111 |
+
# Define the loss function and move it to GPU
|
| 112 |
+
criterion = nn.CrossEntropyLoss().to(device)
|
| 113 |
+
|
| 114 |
+
# Training loop
|
| 115 |
+
num_epochs = 10
|
| 116 |
+
for epoch in range(num_epochs):
|
| 117 |
+
model.train()
|
| 118 |
+
running_loss = 0.0
|
| 119 |
+
for images, labels in train_loader:
|
| 120 |
+
# Move inputs and labels to GPU
|
| 121 |
+
images, labels = images.to(device), labels.to(device)
|
| 122 |
+
|
| 123 |
+
optimizer.zero_grad()
|
| 124 |
+
outputs = model(images)
|
| 125 |
+
logits = outputs.logits # Extract logits from the output
|
| 126 |
+
loss = criterion(logits, labels)
|
| 127 |
+
loss.backward()
|
| 128 |
+
optimizer.step()
|
| 129 |
+
running_loss += loss.item()
|
| 130 |
+
print(f"Epoch {epoch+1}/{num_epochs}, Loss: {running_loss / len(train_loader)}")
|
| 131 |
+
|
| 132 |
+
# Validation loop
|
| 133 |
+
model.eval()
|
| 134 |
+
correct = 0
|
| 135 |
+
total = 0
|
| 136 |
+
with torch.no_grad():
|
| 137 |
+
for images, labels in val_loader:
|
| 138 |
+
images, labels = images.to(device), labels.to(device) # Move inputs and labels to GPU
|
| 139 |
+
outputs = model(images)
|
| 140 |
+
logits = outputs.logits # Extract logits from the output
|
| 141 |
+
_, predicted = torch.max(logits, 1)
|
| 142 |
+
total += labels.size(0)
|
| 143 |
+
correct += (predicted == labels).sum().item()
|
| 144 |
+
print(f"Validation Accuracy: {correct / total}")
|
| 145 |
+
|
| 146 |
+
# Save the trained model
|
| 147 |
+
torch.save(model.state_dict(), 'trained_model.pth')
|
| 148 |
+
|
vit_model_original_test.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from torch.utils.data import Dataset, DataLoader
|
| 4 |
+
from torchvision import transforms
|
| 5 |
+
from transformers import ViTForImageClassification
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import os
|
| 8 |
+
import pandas as pd
|
| 9 |
+
from sklearn.model_selection import train_test_split
|
| 10 |
+
from sklearn.metrics import accuracy_score, precision_score, confusion_matrix, f1_score, average_precision_score
|
| 11 |
+
import matplotlib.pyplot as plt
|
| 12 |
+
import seaborn as sns
|
| 13 |
+
from sklearn.metrics import recall_score
|
| 14 |
+
|
| 15 |
+
def labeling(path_real, path_fake):
|
| 16 |
+
image_paths = []
|
| 17 |
+
labels = []
|
| 18 |
+
|
| 19 |
+
for filename in os.listdir(path_real):
|
| 20 |
+
image_paths.append(os.path.join(path_real, filename))
|
| 21 |
+
labels.append(0)
|
| 22 |
+
|
| 23 |
+
for filename in os.listdir(path_fake):
|
| 24 |
+
image_paths.append(os.path.join(path_fake, filename))
|
| 25 |
+
labels.append(1)
|
| 26 |
+
|
| 27 |
+
dataset = pd.DataFrame({'image_path': image_paths, 'label': labels})
|
| 28 |
+
|
| 29 |
+
return dataset
|
| 30 |
+
|
| 31 |
+
class CustomDataset(Dataset):
|
| 32 |
+
def __init__(self, dataframe, transform=None):
|
| 33 |
+
self.dataframe = dataframe
|
| 34 |
+
self.transform = transform
|
| 35 |
+
|
| 36 |
+
def __len__(self):
|
| 37 |
+
return len(self.dataframe)
|
| 38 |
+
|
| 39 |
+
def __getitem__(self, idx):
|
| 40 |
+
image_path = self.dataframe.iloc[idx, 0] # Image path is in the first column
|
| 41 |
+
image = Image.open(image_path).convert('RGB') # Convert to RGB format
|
| 42 |
+
|
| 43 |
+
if self.transform:
|
| 44 |
+
image = self.transform(image)
|
| 45 |
+
|
| 46 |
+
label = self.dataframe.iloc[idx, 1] # Label is in the second column
|
| 47 |
+
return image, label
|
| 48 |
+
|
| 49 |
+
def shuffle_and_split_data(dataframe, test_size=0.2, random_state=59):
|
| 50 |
+
# Shuffle the DataFrame
|
| 51 |
+
shuffled_df = dataframe.sample(frac=1, random_state=random_state).reset_index(drop=True)
|
| 52 |
+
|
| 53 |
+
# Split the DataFrame into train and validation sets
|
| 54 |
+
train_df, val_df = train_test_split(shuffled_df, test_size=test_size, random_state=random_state)
|
| 55 |
+
|
| 56 |
+
return train_df, val_df
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
if __name__ == "__main__":
|
| 60 |
+
# Check for GPU availability
|
| 61 |
+
device = torch.device('cuda')
|
| 62 |
+
|
| 63 |
+
# Load the pre-trained ViT model and move it to GPU
|
| 64 |
+
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224').to(device)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
model.classifier = nn.Linear(model.config.hidden_size, 2).to(device)
|
| 69 |
+
# Define the image preprocessing pipeline
|
| 70 |
+
preprocess = transforms.Compose([
|
| 71 |
+
transforms.Resize((224, 224)),
|
| 72 |
+
transforms.ToTensor()
|
| 73 |
+
])
|
| 74 |
+
|
| 75 |
+
# Load the test dataset
|
| 76 |
+
test_real_folder = 'test/art/real'
|
| 77 |
+
test_fake_folder = 'test/art/fake'
|
| 78 |
+
test_set = labeling(test_real_folder, test_fake_folder)
|
| 79 |
+
test_dataset = CustomDataset(test_set, transform=preprocess)
|
| 80 |
+
test_loader = DataLoader(test_dataset, batch_size=32)
|
| 81 |
+
|
| 82 |
+
# Load the trained model
|
| 83 |
+
model.load_state_dict(torch.load('trained_model.pth'))
|
| 84 |
+
|
| 85 |
+
# Evaluate the model
|
| 86 |
+
model.eval()
|
| 87 |
+
true_labels = []
|
| 88 |
+
predicted_labels = []
|
| 89 |
+
|
| 90 |
+
with torch.no_grad():
|
| 91 |
+
for images, labels in test_loader:
|
| 92 |
+
images, labels = images.to(device), labels.to(device)
|
| 93 |
+
outputs = model(images)
|
| 94 |
+
logits = outputs.logits # Extract logits from the output
|
| 95 |
+
_, predicted = torch.max(logits, 1)
|
| 96 |
+
true_labels.extend(labels.cpu().numpy())
|
| 97 |
+
predicted_labels.extend(predicted.cpu().numpy())
|
| 98 |
+
|
| 99 |
+
# Calculate evaluation metrics
|
| 100 |
+
accuracy = accuracy_score(true_labels, predicted_labels)
|
| 101 |
+
precision = precision_score(true_labels, predicted_labels)
|
| 102 |
+
cm = confusion_matrix(true_labels, predicted_labels)
|
| 103 |
+
f1 = f1_score(true_labels, predicted_labels)
|
| 104 |
+
ap = average_precision_score(true_labels, predicted_labels)
|
| 105 |
+
recall = recall_score(true_labels, predicted_labels)
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
print(f"Test Accuracy: {accuracy:.2%}")
|
| 109 |
+
print(f"Precision: {precision:.2%}")
|
| 110 |
+
print(f"F1 Score: {f1:.2%}")
|
| 111 |
+
print(f"Average Precision: {ap:.2%}")
|
| 112 |
+
print(f"Recall: {recall:.2%}")
|
| 113 |
+
|
| 114 |
+
# Plot the confusion matrix
|
| 115 |
+
plt.figure(figsize=(8, 6))
|
| 116 |
+
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', cbar=False)
|
| 117 |
+
plt.xlabel('Predicted Labels')
|
| 118 |
+
plt.ylabel('True Labels')
|
| 119 |
+
plt.title('Confusion Matrix')
|
| 120 |
+
plt.show()
|