Image Classification
Transformers
English
art
benjamin4u commited on
Commit
0bbf37a
·
1 Parent(s): 5b16cb6
Files changed (1) hide show
  1. vit_model_test.py +4 -34
vit_model_test.py CHANGED
@@ -11,40 +11,9 @@ from sklearn.metrics import accuracy_score, precision_score, confusion_matrix, f
11
  import matplotlib.pyplot as plt
12
  import seaborn as sns
13
  from sklearn.metrics import recall_score
 
14
 
15
- def labeling(path_real, path_fake):
16
- image_paths = []
17
- labels = []
18
 
19
- for filename in os.listdir(path_real):
20
- image_paths.append(os.path.join(path_real, filename))
21
- labels.append(0)
22
-
23
- for filename in os.listdir(path_fake):
24
- image_paths.append(os.path.join(path_fake, filename))
25
- labels.append(1)
26
-
27
- dataset = pd.DataFrame({'image_path': image_paths, 'label': labels})
28
-
29
- return dataset
30
-
31
- class CustomDataset(Dataset):
32
- def __init__(self, dataframe, transform=None):
33
- self.dataframe = dataframe
34
- self.transform = transform
35
-
36
- def __len__(self):
37
- return len(self.dataframe)
38
-
39
- def __getitem__(self, idx):
40
- image_path = self.dataframe.iloc[idx, 0] # Image path is in the first column
41
- image = Image.open(image_path).convert('RGB') # Convert to RGB format
42
-
43
- if self.transform:
44
- image = self.transform(image)
45
-
46
- label = self.dataframe.iloc[idx, 1] # Label is in the second column
47
- return image, label
48
 
49
  def shuffle_and_split_data(dataframe, test_size=0.2, random_state=59):
50
  # Shuffle the DataFrame
@@ -73,8 +42,9 @@ if __name__ == "__main__":
73
  ])
74
 
75
  # Load the test dataset
76
- test_real_folder = 'test/art/real'
77
- test_fake_folder = 'test/art/fake'
 
78
  test_set = labeling(test_real_folder, test_fake_folder)
79
  test_dataset = CustomDataset(test_set, transform=preprocess)
80
  test_loader = DataLoader(test_dataset, batch_size=32)
 
11
  import matplotlib.pyplot as plt
12
  import seaborn as sns
13
  from sklearn.metrics import recall_score
14
+ from vit_model_traning import labeling,CustomDataset
15
 
 
 
 
16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  def shuffle_and_split_data(dataframe, test_size=0.2, random_state=59):
19
  # Shuffle the DataFrame
 
42
  ])
43
 
44
  # Load the test dataset
45
+ test_real_folder = 'datasets/test_set/real/'
46
+ test_fake_folder = 'datasets/test_set/fake/'
47
+
48
  test_set = labeling(test_real_folder, test_fake_folder)
49
  test_dataset = CustomDataset(test_set, transform=preprocess)
50
  test_loader = DataLoader(test_dataset, batch_size=32)