Image Classification
Keras
File size: 10,174 Bytes
a4e50f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# -*- coding: utf-8 -*-
#images- 2800 training, test- 280
# 10 epoch, batch= 32, kfold= 4
# test accuracy 0.75
# test loss 1.26
# avarage accuracy 61.84
#Classification Summary:
#Real images correctly classified: 76
#Real images incorrectly classified: 63
#Fake images correctly classified: 135
#Fake images incorrectly classified: 5
###########resnet- 诪拽驻讬讗 讞诇拽 诪讛砖讻讘讜转 讛讛转讞诇转讬讜转 讻诇讜诪专 讬砖 讗讬诪讜谉 注诇 砖讻讘讜转 专讘讜转##########
#resnet_model = tf.keras.applications.ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
# Freeze initial layers (optional)
#for layer in resnet_model.layers[:17]:<<<<=
#    layer.trainable = False
# Modify final layer
#x = resnet_model.output
#x = tf.keras.layers.Flatten()(x)
#x = tf.keras.layers.Dense(64, activation='relu')(x)<<<<<<=
#predictions = tf.keras.layers.Dense(1, activation='sigmoid')(x)  # Binary classification



##images- 2800 training, test- 280
#KFold(n_splits=4, batch_size = 32, epochs = 5
#train only last layer
#Classification Summary:
#Average accuracy: 76.95%
#Test Loss: 0.4741879999637604, Test Accuracy: 0.781361997127533
#Real images correctly classified: 116
#Real images incorrectly classified: 23
#Fake images correctly classified: 102
#Fake images incorrectly classified: 38

#############
#saves weight
##images- 2800 training, test- 280
#KFold(n_splits=4, batch_size = 32, epochs = 5
#train only last layer
#Classification Summary:
#Average accuracy: 77.11%
#Test Loss: 0.47622182965278625, Test Accuracy: 0.7777777910232544
#Classification Summary:
#Real images correctly classified: 116
#Real images incorrectly classified: 23
#Fake images correctly classified: 101
#Fake images incorrectly classified: 39

#KFold(n_splits=4, batch_size = 32, epochs = 5
#train only last layer
#Test Loss: 0.5492929220199585, Test Accuracy: 0.7992831468582153
#Average accuracy: 88.79%
#Classification Summary:
#Real images correctly classified: 129
#Real images incorrectly classified: 10
#Fake images correctly classified: 94
#Fake images incorrectly classified: 46
#Classification Report:
#              precision    recall  f1-score   support
#
#        Real       0.74      0.93      0.82       139
#        Fake       0.90      0.67      0.77       140

import random
import numpy as np
import os
import pandas as pd
import cv2
import warnings
from sklearn.model_selection import KFold
import tensorflow as tf
from sklearn.metrics import accuracy_score, confusion_matrix, ConfusionMatrixDisplay
import matplotlib.pyplot as plt
from sklearn.metrics import precision_score, recall_score, f1_score, classification_report

# Ensure h5py is installed
import h5py

# Set the random seed for numpy, tensorflow, and python built-in random module
np.random.seed(42)
tf.random.set_seed(42)
random.seed(42)

warnings.filterwarnings("ignore", category=UserWarning, message=".*iCCP:.*")

# Define data paths
train_real_folder = 'datasets/training_set/real/'
train_fake_folder = 'datasets/training_set/fake/'
test_real_folder = 'datasets/test_set/real/'
test_fake_folder = 'datasets/test_set/fake/'

# Load train image paths and labels
train_image_paths = []
train_labels = []

# Load train_real image paths and labels
for filename in os.listdir(train_real_folder):
    image_path = os.path.join(train_real_folder, filename)
    label = 0  # Real images have label 0
    train_image_paths.append(image_path)
    train_labels.append(label)

# Load train_fake image paths and labels
for filename in os.listdir(train_fake_folder):
    image_path = os.path.join(train_fake_folder, filename)
    label = 1  # Fake images have label 1
    train_image_paths.append(image_path)
    train_labels.append(label)

# Load test image paths and labels
test_image_paths = []
test_labels = []

# Load test_real image paths and labels
for filename in os.listdir(test_real_folder):
    image_path = os.path.join(test_real_folder, filename)
    label = 0  # Assuming test real images are all real (label 0)
    test_image_paths.append(image_path)
    test_labels.append(label)

# Load test_fake image paths and labels
for filename in os.listdir(test_fake_folder):
    image_path = os.path.join(test_fake_folder, filename)
    label = 1  # Assuming test fake images are all fake (label 1)
    test_image_paths.append(image_path)
    test_labels.append(label)

# Create DataFrames
train_dataset = pd.DataFrame({'image_path': train_image_paths, 'label': train_labels})
test_dataset = pd.DataFrame({'image_path': test_image_paths, 'label': test_labels})

# Function to preprocess images
def preprocess_image(image_path):
    """Loads, resizes, and normalizes an image."""
    image = cv2.imread(image_path)
    resized_image = cv2.resize(image, (224, 224))  # Target size defined here
    normalized_image = resized_image.astype(np.float32) / 255.0
    return normalized_image

# Preprocess all images and convert labels to numpy arrays
X = np.array([preprocess_image(path) for path in train_image_paths])
Y = np.array(train_labels)

# Define ResNet50 model
resnet_model = tf.keras.applications.ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))

# Freeze all layers except the last one
for layer in resnet_model.layers[:-1]:
    layer.trainable = False

# Modify final layer
x = resnet_model.output
x = tf.keras.layers.Flatten()(x)
predictions = tf.keras.layers.Dense(1, activation='sigmoid')(x)  # Binary classification

# Create new model with modified top
new_model = tf.keras.models.Model(inputs=resnet_model.input, outputs=predictions)

# Compile the new model
new_model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

# Set parameters for cross-validation
kf = KFold(n_splits=4, shuffle=True, random_state=42)
batch_size = 32
epochs = 5
weights_file = 'model_2.weights.h5'
# Lists to store accuracy and loss for each fold
accuracy_per_fold = []
loss_per_fold = []

# Perform K-Fold Cross-Validation
for train_index, val_index in kf.split(X):
    X_train, X_val = X[train_index], X[val_index]
    Y_train, Y_val = Y[train_index], Y[val_index]
    
    # Load weights if they exist
    if os.path.exists(weights_file):
        new_model.load_weights(weights_file)
        print(f"Loaded weights from {weights_file}")
    
    # Train only the last layer
    history = new_model.fit(X_train, Y_train, epochs=epochs, batch_size=batch_size, verbose=1, validation_data=(X_val, Y_val))
    
    # Save weights after training
    new_model.save_weights(weights_file)
    print(f"Saved weights to {weights_file}")
    
    # Evaluate the model on the validation data
    val_loss, val_accuracy = new_model.evaluate(X_val, Y_val)
    
    # Store the accuracy score for this fold
    accuracy_per_fold.append(val_accuracy)
    loss_per_fold.append(val_loss)
    print(f'Fold accuracy: {val_accuracy*100:.2f}%')
    print(f'Fold loss: {val_loss:.4f}')
    
# Print average accuracy and loss across all folds
print(f'\nAverage accuracy across all folds: {np.mean(accuracy_per_fold)*100:.2f}%')
print(f'Average loss across all folds: {np.mean(loss_per_fold):.4f}')

# Evaluate the preprocessed test images using the final model
test_loss, test_accuracy = new_model.evaluate(np.array([preprocess_image(path) for path in test_image_paths]), np.array(test_labels))
print(f"\nTest Loss: {test_loss}, Test Accuracy: {test_accuracy}")

# Predict labels for the test set
predictions = new_model.predict(np.array([preprocess_image(path) for path in test_image_paths]))
predicted_labels = (predictions > 0.5).astype(int).flatten()

# Summarize the classification results
true_real_correct = np.sum((np.array(test_labels) == 0) & (predicted_labels == 0))
true_real_incorrect = np.sum((np.array(test_labels) == 0) & (predicted_labels == 1))
true_fake_correct = np.sum((np.array(test_labels) == 1) & (predicted_labels == 1))
true_fake_incorrect = np.sum((np.array(test_labels) == 1) & (predicted_labels == 0))

print("\nClassification Summary:")
print(f"Real images correctly classified: {true_real_correct}")
print(f"Real images incorrectly classified: {true_real_incorrect}")
print(f"Fake images correctly classified: {true_fake_correct}")
print(f"Fake images incorrectly classified: {true_fake_incorrect}")

# Print detailed classification report
print("\nClassification Report:")
print(classification_report(test_labels, predicted_labels, target_names=['Real', 'Fake']))

# Plot confusion matrix
cm = confusion_matrix(test_labels, predicted_labels)
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=['Real', 'Fake'])
disp.plot(cmap=plt.cm.Blues)
plt.title("Confusion Matrix")
plt.show()

# Plot training & validation accuracy values
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Validation'], loc='upper left')
plt.xticks(np.arange(0, len(history.history['accuracy']), step=1), np.arange(1, len(history.history['accuracy']) + 1, step=1))

# Plot training & validation loss values
plt.subplot(1, 2, 2)
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Validation'], loc='upper left')
plt.xticks(np.arange(0, len(history.history['loss']), step=1), np.arange(1, len(history.history['loss']) + 1, step=1))

plt.tight_layout()
plt.show()

# Plot validation accuracy and loss per fold
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(range(1, kf.get_n_splits() + 1), accuracy_per_fold, marker='o')
plt.title('Validation Accuracy per Fold')
plt.xlabel('Fold')
plt.ylabel('Accuracy')

plt.subplot(1, 2, 2)
plt.plot(range(1, kf.get_n_splits() + 1), loss_per_fold, marker='o')
plt.title('Validation Loss per Fold')
plt.xlabel('Fold')
plt.ylabel('Loss')

plt.tight_layout()
plt.show()