Update cnn_ela_training.py
Browse files- cnn_ela_training.py +22 -23
cnn_ela_training.py
CHANGED
@@ -18,7 +18,7 @@ import tensorflow as tf
|
|
18 |
from sklearn.model_selection import train_test_split
|
19 |
from sklearn.metrics import confusion_matrix
|
20 |
import itertools
|
21 |
-
from tensorflow.keras.utils import to_categorical
|
22 |
from keras.models import Sequential
|
23 |
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D
|
24 |
from tensorflow.keras.optimizers.legacy import RMSprop
|
@@ -57,6 +57,7 @@ def convert_to_ela_image(path, quality, output_dir, resize=(256, 256)):
|
|
57 |
|
58 |
return ela_im
|
59 |
|
|
|
60 |
def shuffle_and_split_data(dataframe, test_size=0.2, random_state=59):
|
61 |
# Shuffle the DataFrame
|
62 |
shuffled_df = dataframe.sample(frac=1, random_state=random_state).reset_index(drop=True)
|
@@ -84,10 +85,8 @@ def labeling(path_real, path_fake):
|
|
84 |
|
85 |
|
86 |
if __name__ == "__main__":
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
np.random.seed(22)
|
92 |
tf.random.set_seed(9)
|
93 |
|
@@ -95,34 +94,29 @@ if __name__ == "__main__":
|
|
95 |
traning_real_folder = 'datasets/training_set/real/'
|
96 |
|
97 |
|
98 |
-
|
99 |
traning_ela_output = 'datasets/training_set/ela_output/'
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
traning_set = labeling(traning_real_folder, traning_fake_folder)
|
107 |
|
108 |
|
109 |
X = []
|
110 |
Y = []
|
111 |
-
|
|
|
|
|
|
|
112 |
for index, row in traning_set.iterrows():
|
113 |
X.append(array(convert_to_ela_image(row[0], 90,traning_ela_output).resize((128, 128))).flatten() / 255.0)
|
114 |
Y.append(row[1])
|
115 |
|
116 |
-
|
117 |
X = np.array(X)
|
118 |
Y = to_categorical(Y, 2)
|
119 |
-
|
120 |
X = X.reshape(-1, 128, 128, 3)
|
121 |
-
|
122 |
X_train, X_val, Y_train, Y_val = train_test_split(X, Y, test_size = 0.2, random_state=1,shuffle=True)
|
123 |
|
124 |
-
model = Sequential()
|
125 |
|
|
|
|
|
|
|
126 |
model.add(Conv2D(filters = 32, kernel_size = (5,5),padding = 'valid',
|
127 |
activation ='relu', input_shape = (128,128,3)))
|
128 |
print("Input: ", model.input_shape)
|
@@ -146,9 +140,11 @@ if __name__ == "__main__":
|
|
146 |
|
147 |
model.summary()
|
148 |
|
|
|
149 |
optimizer = RMSprop(lr=0.0005, rho=0.9, epsilon=1e-08, decay=0.0)
|
|
|
150 |
model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"])
|
151 |
-
|
152 |
early_stopping = EarlyStopping(monitor='val_acc',
|
153 |
min_delta=0,
|
154 |
patience=2,
|
@@ -157,11 +153,14 @@ if __name__ == "__main__":
|
|
157 |
|
158 |
epochs = 22
|
159 |
batch_size = 100
|
160 |
-
|
161 |
-
|
162 |
history = model.fit(X_train, Y_train, batch_size = batch_size, epochs = epochs,
|
163 |
validation_data = (X_val, Y_val), verbose = 2, callbacks=[early_stopping])
|
164 |
-
|
|
|
|
|
|
|
165 |
plt.plot(history.history['accuracy'])
|
166 |
plt.plot(history.history['val_accuracy'])
|
167 |
plt.title('Model accuracy')
|
@@ -179,8 +178,8 @@ if __name__ == "__main__":
|
|
179 |
plt.legend(['Train', 'Validation'], loc='upper left')
|
180 |
plt.show()
|
181 |
|
182 |
-
# every training can give different results ,
|
183 |
-
|
184 |
|
185 |
|
186 |
|
|
|
18 |
from sklearn.model_selection import train_test_split
|
19 |
from sklearn.metrics import confusion_matrix
|
20 |
import itertools
|
21 |
+
from tensorflow.keras.utils import to_categorical
|
22 |
from keras.models import Sequential
|
23 |
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D
|
24 |
from tensorflow.keras.optimizers.legacy import RMSprop
|
|
|
57 |
|
58 |
return ela_im
|
59 |
|
60 |
+
|
61 |
def shuffle_and_split_data(dataframe, test_size=0.2, random_state=59):
|
62 |
# Shuffle the DataFrame
|
63 |
shuffled_df = dataframe.sample(frac=1, random_state=random_state).reset_index(drop=True)
|
|
|
85 |
|
86 |
|
87 |
if __name__ == "__main__":
|
88 |
+
##############################################################
|
89 |
+
# handling the dataset , set it and label it
|
|
|
|
|
90 |
np.random.seed(22)
|
91 |
tf.random.set_seed(9)
|
92 |
|
|
|
94 |
traning_real_folder = 'datasets/training_set/real/'
|
95 |
|
96 |
|
|
|
97 |
traning_ela_output = 'datasets/training_set/ela_output/'
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
traning_set = labeling(traning_real_folder, traning_fake_folder)
|
99 |
|
100 |
|
101 |
X = []
|
102 |
Y = []
|
103 |
+
|
104 |
+
#################################################################
|
105 |
+
# preprocess the images using ELA method and storing the output.
|
106 |
+
|
107 |
for index, row in traning_set.iterrows():
|
108 |
X.append(array(convert_to_ela_image(row[0], 90,traning_ela_output).resize((128, 128))).flatten() / 255.0)
|
109 |
Y.append(row[1])
|
110 |
|
|
|
111 |
X = np.array(X)
|
112 |
Y = to_categorical(Y, 2)
|
|
|
113 |
X = X.reshape(-1, 128, 128, 3)
|
|
|
114 |
X_train, X_val, Y_train, Y_val = train_test_split(X, Y, test_size = 0.2, random_state=1,shuffle=True)
|
115 |
|
|
|
116 |
|
117 |
+
################################################################################
|
118 |
+
# Cnn network creation
|
119 |
+
model = Sequential()
|
120 |
model.add(Conv2D(filters = 32, kernel_size = (5,5),padding = 'valid',
|
121 |
activation ='relu', input_shape = (128,128,3)))
|
122 |
print("Input: ", model.input_shape)
|
|
|
140 |
|
141 |
model.summary()
|
142 |
|
143 |
+
#Define optimizer .
|
144 |
optimizer = RMSprop(lr=0.0005, rho=0.9, epsilon=1e-08, decay=0.0)
|
145 |
+
#setting the model , loss func , mertics , optimizer.
|
146 |
model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"])
|
147 |
+
#setting early stopping to train faster.
|
148 |
early_stopping = EarlyStopping(monitor='val_acc',
|
149 |
min_delta=0,
|
150 |
patience=2,
|
|
|
153 |
|
154 |
epochs = 22
|
155 |
batch_size = 100
|
156 |
+
#####################################################
|
157 |
+
#running the model , adding the validation set
|
158 |
history = model.fit(X_train, Y_train, batch_size = batch_size, epochs = epochs,
|
159 |
validation_data = (X_val, Y_val), verbose = 2, callbacks=[early_stopping])
|
160 |
+
|
161 |
+
|
162 |
+
#####################################################
|
163 |
+
#plots and metrics
|
164 |
plt.plot(history.history['accuracy'])
|
165 |
plt.plot(history.history['val_accuracy'])
|
166 |
plt.title('Model accuracy')
|
|
|
178 |
plt.legend(['Train', 'Validation'], loc='upper left')
|
179 |
plt.show()
|
180 |
|
181 |
+
# every training can give different results , you can mark the next line as comment when you got the best result running the test set.
|
182 |
+
model.save('ELA_CNN_ART_V2.h5')
|
183 |
|
184 |
|
185 |
|