File size: 9,677 Bytes
168c33d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
# -*- coding: utf-8 -*-
"""
Created on Sat May 18 16:15:32 2024
@author: litav
"""
import numpy as np
import tensorflow as tf
import random
import os
import pandas as pd
import cv2
import matplotlib.pyplot as plt
from sklearn.model_selection import KFold
from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.models import Sequential
from sklearn.metrics import accuracy_score, confusion_matrix, ConfusionMatrixDisplay
from tensorflow.keras.layers import Dropout
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
from sklearn.metrics import precision_score, recall_score, f1_score, classification_report
# Suppress iCCP warning
import warnings
warnings.filterwarnings("ignore", category=UserWarning, message=".*iCCP:.*")
# Define data paths
train_real_folder = 'datasets/training_set/real/'
train_fake_folder = 'datasets/training_set/fake/'
test_real_folder = 'datasets/test_set/real/'
test_fake_folder = 'datasets/test_set/fake/'
# Load train image paths and labels
train_image_paths = []
train_labels = []
# Load train_real image paths and labels
for filename in os.listdir(train_real_folder):
image_path = os.path.join(train_real_folder, filename)
label = 0 # Real images have label 0
train_image_paths.append(image_path)
train_labels.append(label)
# Load train_fake image paths and labels
for filename in os.listdir(train_fake_folder):
image_path = os.path.join(train_fake_folder, filename)
label = 1 # Fake images have label 1
train_image_paths.append(image_path)
train_labels.append(label)
# Load test image paths and labels
test_image_paths = []
test_labels = []
# Load test_real image paths and labels
for filename in os.listdir(test_real_folder):
image_path = os.path.join(test_real_folder, filename)
label = 0 # Assuming test real images are all real (label 0)
test_image_paths.append(image_path)
test_labels.append(label)
# Load test_fake image paths and labels
for filename in os.listdir(test_fake_folder):
image_path = os.path.join(test_fake_folder, filename)
label = 1 # Assuming test fake images are all fake (label 1)
test_image_paths.append(image_path)
test_labels.append(label)
# Create DataFrames
train_dataset = pd.DataFrame({'image_path': train_image_paths, 'label': train_labels})
test_dataset = pd.DataFrame({'image_path': test_image_paths, 'label': test_labels})
# Function to preprocess images
def preprocess_image(image_path):
"""Loads, resizes, and normalizes an image."""
image = cv2.imread(image_path)
resized_image = cv2.resize(image, (128, 128)) # Target size defined here
normalized_image = resized_image.astype(np.float32) / 255.0
return normalized_image
# Preprocess all images and convert labels to numpy arrays
X = np.array([preprocess_image(path) for path in train_image_paths])
Y = np.array(train_labels)
# Define discriminator network
def build_discriminator(input_shape, dropout_rate=0.5):
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=input_shape))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(Flatten())
model.add(Dense(64, activation='relu'))
model.add(Dropout(dropout_rate)) # Adding dropout layer
model.add(Dense(1, activation='sigmoid'))
return model
# Function to check if previous weights exist
def load_previous_weights(model, fold_number):
weights_file = f'model_weights/model_fold_{fold_number}.weights.h5'
if os.path.exists(weights_file):
model.load_weights(weights_file)
print(f"Loaded weights from {weights_file}")
else:
print("No previous weights found.")
# Function to save weights if current accuracy is higher
def save_updated_weights(model, fold_number, val_accuracy, best_accuracy):
weights_file = f'model_weights/model_fold_{fold_number}.weights.h5'
if val_accuracy > best_accuracy:
model.save_weights(weights_file)
print(f"Saved updated weights to {weights_file} with val_accuracy: {val_accuracy:.4f}")
return val_accuracy
else:
print(f"Did not save weights for fold {fold_number} as val_accuracy {val_accuracy:.4f} is not better than {best_accuracy:.4f}")
return best_accuracy
# Set parameters for cross-validation
kf = KFold(n_splits=4, shuffle=True, random_state=42)
batch_size = 32
epochs = 15
# Lists to store accuracy and loss for each fold
accuracy_per_fold = []
loss_per_fold = []
# Store the best accuracies for each fold
best_accuracies = [0] * kf.get_n_splits()
# Perform K-Fold Cross-Validation
for fold_number, (train_index, val_index) in enumerate(kf.split(X), 1):
X_train, X_val = X[train_index], X[val_index]
Y_train, Y_val = Y[train_index], Y[val_index]
# Create and compile model
input_dim = X_train.shape[1:] # Dimensionality of the input images
model = build_discriminator(input_dim)
model.compile(loss='binary_crossentropy', optimizer=Adam(0.0002, 0.5), metrics=['accuracy'])
# Load previous weights if they exist
load_previous_weights(model, fold_number)
# Define Early Stopping callback
early_stopping = EarlyStopping(monitor='val_accuracy', patience=5, restore_best_weights=True)
# Define ModelCheckpoint callback to save the best weights
checkpoint = ModelCheckpoint(filepath=f'best_model_weights/model_fold_{fold_number}.best.weights.h5.keras', monitor='val_accuracy', save_best_only=True, mode='max')
# Train the model with the callbacks
history = model.fit(X_train, Y_train, epochs=epochs, batch_size=batch_size, verbose=2,
validation_data=(X_val, Y_val), callbacks=[early_stopping, checkpoint])
# Store the accuracy and loss for this folds
average_val_accuracy = np.mean(history.history['val_accuracy'])
accuracy_per_fold.append(average_val_accuracy)
average_val_loss = np.mean(history.history['val_loss'])
loss_per_fold.append(average_val_loss)
# Save updated weights if accuracy is high
best_accuracies[fold_number - 1] = save_updated_weights(model, fold_number, average_val_accuracy, best_accuracies[fold_number - 1])
# Print fold accuracy
print(f'Fold {fold_number} average accuracy: {average_val_accuracy*100:.2f}%')
# Print average accuracy across all folds
print(f'Average accuracy across all folds: {np.mean(accuracy_per_fold)*100:.2f}%')
# Load the model weights of the best model
best_model_index = np.argmax(accuracy_per_fold)
best_model_path = f'best_model_weights/model_fold_{best_model_index + 1}.best.weights.h5.keras'
model.load_weights(best_model_path)
# Evaluate the preprocessed test images using the best model
test_loss, test_accuracy = model.evaluate(np.array([preprocess_image(path) for path in test_image_paths]), np.array(test_labels))
print(f"\nTest Loss: {test_loss}, Test Accuracy: {test_accuracy}")
# Predict labels for the test set using the best model
predictions = model.predict(np.array([preprocess_image(path) for path in test_image_paths]))
predicted_labels = (predictions > 0.5).astype(int).flatten()
# Summarize the classification results
true_real_correct = np.sum((np.array(test_labels) == 0) & (predicted_labels == 0))
true_real_incorrect = np.sum((np.array(test_labels) == 0) & (predicted_labels == 1))
true_fake_correct = np.sum((np.array(test_labels) == 1) & (predicted_labels == 1))
true_fake_incorrect = np.sum((np.array(test_labels) == 1) & (predicted_labels == 0))
print("\nClassification Summary:")
print(f"Real images correctly classified: {true_real_correct}")
print(f"Real images incorrectly classified: {true_real_incorrect}")
print(f"Fake images correctly classified: {true_fake_correct}")
print(f"Fake images incorrectly classified: {true_fake_incorrect}")
# Print detailed classification report
print("\nClassification Report:")
print(classification_report(test_labels, predicted_labels, target_names=['Real', 'Fake']))
print(model.summary())
# Plot confusion matrix
cm = confusion_matrix(test_labels, predicted_labels)
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=['Real', 'Fake'])
disp.plot(cmap=plt.cm.Blues)
plt.title("Confusion Matrix")
plt.show()
# Plot training & validation accuracy values
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Validation'], loc='upper left')
plt.xticks(np.arange(0, len(history.history['accuracy']), step=1), np.arange(1, len(history.history['accuracy']) + 1, step=1))
# Plot training & validation loss values
plt.subplot(1, 2, 2)
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Validation'], loc='upper left')
plt.xticks(np.arange(0, len(history.history['loss']), step=1), np.arange(1, len(history.history['loss']) + 1, step=1))
plt.tight_layout()
plt.show()
# Plot validation accuracy and loss per fold
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(range(1, kf.get_n_splits() + 1), accuracy_per_fold, marker='o')
plt.title('Validation Accuracy per Fold')
plt.xlabel('Fold')
plt.ylabel('Accuracy')
plt.subplot(1, 2, 2)
plt.plot(range(1, kf.get_n_splits() + 1), loss_per_fold, marker='o')
plt.title('Validation Loss per Fold')
plt.xlabel('Fold')
plt.ylabel('Loss')
plt.tight_layout()
plt
|