File size: 5,294 Bytes
328f2b7 9c489e6 328f2b7 917f929 328f2b7 8fd92ee 328f2b7 8fd92ee 328f2b7 8fd92ee 328f2b7 8fd92ee 328f2b7 8fd92ee 328f2b7 8fd92ee 328f2b7 8fd92ee 328f2b7 8fd92ee 328f2b7 8fd92ee 328f2b7 8fd92ee 328f2b7 8fd92ee 328f2b7 8fd92ee 328f2b7 8fd92ee 328f2b7 8fd92ee 328f2b7 8fd92ee 328f2b7 8fd92ee 328f2b7 8fd92ee 328f2b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
---
license: gemma
language:
- ja
- en
base_model:
- google/gemma-3-4b-it
pipeline_tag: text-generation
---
# DataPilot/ArrowMint-Gemma3-4B-ChocoMint-instruct-v0.2 モデルカード
**モデルリポジトリ**: [DataPilot/ArrowMint-Gemma3-4B-ChocoMint-instruct-v0.2](https://huggingface.co/DataPilot/ArrowMint-Gemma3-4B-ChocoMint-instruct-v0.2)
**ベースモデル**: [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it)
## Overview
`DataPilot/ArrowMint-Gemma3-4B-ChocoMint-instruct-v0.2`は、Googleによって開発された強力なマルチモーダルモデルである`google/gemma-3-4b-it`をベースとしてファインチューニングされた指示応答モデルです。
このモデルは、[Unsloth](https://github.com/unslothai/unsloth)ライブラリと高品質な合成データセットを用いてトレーニングされました。主な目的は、ベースモデルの持つ能力を維持・強化しつつ、特に**プロンプト(指示)への追従能力**と**マルチターン対話における性能**を向上させることです。
Gemma 3ファミリーと同様に、テキスト入力と画像入力の両方に対応し、テキスト出力を生成することができます。
## How to use
このモデルを使用するには、Transformersライブラリ (バージョン 4.50.0 以降) が必要です。
```bash
pip install -U transformers accelerate Pillow requests torch
```
### 画像付き推論
```python
from transformers import AutoProcessor, Gemma3ForConditionalGeneration
from PIL import Image
import requests
import torch
model_id = "DataPilot/ArrowMint-Gemma3-4B-ChocoMint-instruct-v0.2"
model = Gemma3ForConditionalGeneration.from_pretrained(
model_id, device_map="auto"
).eval()
processor = AutoProcessor.from_pretrained(model_id)
messages = [
{
"role": "system",
"content": [{"type": "text", "text": "あなたは素晴らしい日本語アシスタントです。"}]
},
{
"role": "user",
"content": [
{"type": "image", "image": "https://cs.stanford.edu/people/rak248/VG_100K_2/2399540.jpg"},
{"type": "text", "text": "この画像を説明してください。"}
]
}
]
inputs = processor.apply_chat_template(
messages, add_generation_prompt=True, tokenize=True,
return_dict=True, return_tensors="pt"
).to(model.device, dtype=torch.bfloat16)
input_len = inputs["input_ids"].shape[-1]
with torch.inference_mode():
generation = model.generate(**inputs, max_new_tokens=100, do_sample=False)
generation = generation[0][input_len:]
decoded = processor.decode(generation, skip_special_tokens=True)
print(decoded)
```
### 画像無し推論
```python
from transformers import AutoProcessor, Gemma3ForConditionalGeneration
import torch
model_id = "DataPilot/ArrowMint-Gemma3-4B-ChocoMint-instruct-v0.2"
model = Gemma3ForConditionalGeneration.from_pretrained(
model_id, device_map="auto"
).eval()
processor = AutoProcessor.from_pretrained(model_id)
messages = [
{
"role": "system",
"content": [{"type": "text", "text": "あなたは素晴らしい日本語アシスタントです。"}]
},
{
"role": "user",
"content": [
{"type": "text", "text": "AI言語モデルであるLaMDAが意識があることを主張して弁護士を呼んだとのことです。LaMDAには意識があると思いますか?"}
]
}
]
inputs = processor.apply_chat_template(
messages, add_generation_prompt=True, tokenize=True,
return_dict=True, return_tensors="pt"
).to(model.device, dtype=torch.bfloat16)
input_len = inputs["input_ids"].shape[-1]
with torch.inference_mode():
generation = model.generate(**inputs, max_new_tokens=100, do_sample=False)
generation = generation[0][input_len:]
decoded = processor.decode(generation, skip_special_tokens=True)
print(decoded)
```
**注意点:**
* Gemma 3モデルは比較的大きなメモリを必要とします。特に4Bモデルでは、十分なVRAMを持つGPUが必要です。`torch_dtype=torch.bfloat16` や `device_map="auto"` を使用してメモリ使用量を削減・分散することを推奨します。
* Gemma 3モデルはリモートコードの実行を要求する場合があります (`trust_remote_code=True`)。信頼できるソースからモデルをロードしていることを確認してください。
* プロンプトの形式はモデルの性能に大きく影響します。ベースモデルである `google/gemma-3-4b-it` のチャットテンプレートに従うことを推奨します。上記コード例では `apply_chat_template` がこれを自動的に処理します。
## License
このモデルは、ベースモデルである `google/gemma-3-4b-it` のライセンスに基づいています。詳細については、[Gemma Terms of Use](https://ai.google.dev/gemma/terms) を参照してください。
派生モデルである `DataPilot/ArrowMint-Gemma3-4B-ChocoMint-instruct-v0.2` の利用にあたっては、ベースモデルのライセンス条件、特に利用制限([Gemma Prohibited Use Policy](https://ai.google.dev/gemma/prohibited_use_policy))に従う必要があります。
|