Xiaowen-dg commited on
Commit
f86a115
·
verified ·
1 Parent(s): 052c55e

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +104 -0
README.md ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - de
4
+ library_name: transformers
5
+ license: llama3
6
+ model-index:
7
+ - name: Llama3-DiscoLeo-Instruct-8B-v0.1
8
+ results: []
9
+ ---
10
+ # Llama3-DiscoLeo-Instruct 8B (version 0.1)
11
+
12
+ ## Thanks and Accreditation
13
+
14
+ [DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1](https://huggingface.co/collections/DiscoResearch/discoleo-8b-llama3-for-german-6650527496c0fafefd4c9729)
15
+ is the result of a joint effort between [DiscoResearch](https://huggingface.co/DiscoResearch) and [Occiglot](https://huggingface.co/occiglot)
16
+ with support from the [DFKI](https://www.dfki.de/web/) (German Research Center for Artificial Intelligence) and [hessian.Ai](https://hessian.ai).
17
+ Occiglot kindly handled data preprocessing, filtering, and deduplication as part of their latest [dataset release](https://huggingface.co/datasets/occiglot/occiglot-fineweb-v0.5), as well as sharing their compute allocation at hessian.Ai's 42 Supercomputer.
18
+
19
+ ## Model Overview
20
+
21
+ Llama3_DiscoLeo_Instruct_8B_v0 is an instruction tuned version of our [Llama3-German-8B](https://huggingface.co/DiscoResearch/Llama3_German_8B).
22
+ The base model was derived from [Meta's Llama3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) through continuous pretraining on 65 billion high-quality German tokens, similar to previous [LeoLM](https://huggingface.co/LeoLM) or [Occiglot](https://huggingface.co/collections/occiglot/occiglot-eu5-7b-v01-65dbed502a6348b052695e01) models.
23
+ We finetuned this checkpoint on the German Instruction dataset from DiscoResearch created by [Jan-Philipp Harries](https://huggingface.co/jphme) and [Daniel Auras](https://huggingface.co/rasdani) ([DiscoResearch](https://huggingface.co/DiscoResearch), [ellamind](https://ellamind.com)).
24
+
25
+
26
+ ## How to use
27
+ Llama3_DiscoLeo_Instruct_8B_v0.1 uses the [Llama-3 chat template](https://github.com/meta-llama/llama3?tab=readme-ov-file#instruction-tuned-models), which can be easily used with [transformer's chat templating](https://huggingface.co/docs/transformers/main/en/chat_templating).
28
+ See [below](https://huggingface.co/DiscoResearch/Llama3_DiscoLeo_Instruct_8B_v0.1#usage-example) for a usage example.
29
+
30
+ ## Model Training and Hyperparameters
31
+ The model was full-fintuned with axolotl on the [hessian.Ai 42](hessian.ai) with 8192 context-length, learning rate 2e-5 and batch size of 16.
32
+
33
+
34
+ ## Evaluation and Results
35
+
36
+ We evaluated the model using a suite of common English Benchmarks and their German counterparts with [GermanBench](https://github.com/bjoernpl/GermanBenchmark).
37
+
38
+ In the below image and corresponding table, you can see the benchmark scores for the different instruct models compared to Metas instruct version. All checkpoints are available in this [collection](https://huggingface.co/collections/DiscoResearch/discoleo-8b-llama3-for-german-6650527496c0fafefd4c9729).
39
+
40
+ ![instruct scores](instruct_model_benchmarks.png)
41
+
42
+ | Model | truthful_qa_de | truthfulqa_mc | arc_challenge | arc_challenge_de | hellaswag | hellaswag_de | MMLU | MMLU-DE | mean |
43
+ |----------------------------------------------------|----------------|---------------|---------------|------------------|-------------|--------------|-------------|-------------|-------------|
44
+ | meta-llama/Meta-Llama-3-8B-Instruct | 0.47498 | 0.43923 | **0.59642** | 0.47952 | **0.82025** | 0.60008 | **0.66658** | 0.53541 | 0.57656 |
45
+ | DiscoResearch/Llama3-German-8B | 0.49499 | 0.44838 | 0.55802 | 0.49829 | 0.79924 | 0.65395 | 0.62240 | 0.54413 | 0.57743 |
46
+ | DiscoResearch/Llama3-German-8B-32k | 0.48920 | 0.45138 | 0.54437 | 0.49232 | 0.79078 | 0.64310 | 0.58774 | 0.47971 | 0.55982 |
47
+ | **DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1** | **0.53042** | 0.52867 | 0.59556 | **0.53839** | 0.80721 | 0.66440 | 0.61898 | 0.56053 | **0.60552** |
48
+ | DiscoResearch/Llama3-DiscoLeo-Instruct-8B-32k-v0.1| 0.52749 | **0.53245** | 0.58788 | 0.53754 | 0.80770 | **0.66709** | 0.62123 | **0.56238** | 0.60547 |
49
+
50
+ ## Model Configurations
51
+
52
+ We release DiscoLeo-8B in the following configurations:
53
+ 1. [Base model with continued pretraining](https://huggingface.co/DiscoResearch/Llama3_German_8B)
54
+ 2. [Long-context version (32k context length)](https://huggingface.co/DiscoResearch/Llama3_German_8B_32k)
55
+ 3. [Instruction-tuned version of the base model](https://huggingface.co/DiscoResearch/Llama3_DiscoLeo_Instruct_8B_v0.1) (This model)
56
+ 4. [Instruction-tuned version of the long-context model](https://huggingface.co/DiscoResearch/Llama3_DiscoLeo_Instruct_8B_32k_v0.1)
57
+ 5. [Experimental `DARE-TIES` Merge with Llama3-Instruct](https://huggingface.co/DiscoResearch/Llama3_DiscoLeo_8B_DARE_Experimental)
58
+ 6. [Collection of Quantized versions](https://huggingface.co/collections/DiscoResearch/discoleo-8b-quants-6651bcf8f72c9a37ce485d42)
59
+
60
+ ## Usage Example
61
+ Here's how to use the model with transformers:
62
+ ```python
63
+ from transformers import AutoModelForCausalLM, AutoTokenizer
64
+ import torch
65
+
66
+ device="cuda"
67
+
68
+ model = AutoModelForCausalLM.from_pretrained(
69
+ "DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1",
70
+ torch_dtype="auto",
71
+ device_map="auto"
72
+ )
73
+ tokenizer = AutoTokenizer.from_pretrained("DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1")
74
+
75
+ prompt = "Schreibe ein Essay über die Bedeutung der Energiewende für Deutschlands Wirtschaft"
76
+ messages = [
77
+ {"role": "system", "content": "Du bist ein hilfreicher Assistent."},
78
+ {"role": "user", "content": prompt}
79
+ ]
80
+ text = tokenizer.apply_chat_template(
81
+ messages,
82
+ tokenize=False,
83
+ add_generation_prompt=True
84
+ )
85
+ model_inputs = tokenizer([text], return_tensors="pt").to(device)
86
+
87
+ generated_ids = model.generate(
88
+ model_inputs.input_ids,
89
+ max_new_tokens=512
90
+ )
91
+ generated_ids = [
92
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
93
+ ]
94
+
95
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
96
+ ```
97
+
98
+ ## Acknowledgements
99
+
100
+ The model was trained and evaluated by [Björn Plüster](https://huggingface.co/bjoernp) ([DiscoResearch](https://huggingface.co/DiscoResearch), [ellamind](https://ellamind.com)) with data preparation and project supervision by [Manuel Brack](http://manuel-brack.eu) ([DFKI](https://www.dfki.de/web/), [TU-Darmstadt](https://www.tu-darmstadt.de/)). Initial work on dataset collection and curation was performed by [Malte Ostendorff](https://ostendorff.org) and [Pedro Ortiz Suarez](https://portizs.eu). Instruction tuning was done with the DiscoLM German dataset created by [Jan-Philipp Harries](https://huggingface.co/jphme) and [Daniel Auras](https://huggingface.co/rasdani) ([DiscoResearch](https://huggingface.co/DiscoResearch), [ellamind](https://ellamind.com)). We extend our gratitude to [LAION](https://laion.ai/) and friends, especially [Christoph Schuhmann](https://entwickler.de/experten/christoph-schuhmann) and [Jenia Jitsev](https://huggingface.co/JJitsev), for initiating this collaboration.
101
+
102
+ The model training was supported by a compute grant at the [42 supercomputer](https://hessian.ai/) which is a central component in the development of [hessian AI](https://hessian.ai/), the [AI Innovation Lab](https://hessian.ai/infrastructure/ai-innovationlab/) (funded by the [Hessian Ministry of Higher Education, Research and the Art (HMWK)](https://wissenschaft.hessen.de) & the [Hessian Ministry of the Interior, for Security and Homeland Security (HMinD)](https://innen.hessen.de)) and the [AI Service Centers](https://hessian.ai/infrastructure/ai-service-centre/) (funded by the [German Federal Ministry for Economic Affairs and Climate Action (BMWK)](https://www.bmwk.de/Navigation/EN/Home/home.html)).
103
+ The curation of the training data is partially funded by the [German Federal Ministry for Economic Affairs and Climate Action (BMWK)](https://www.bmwk.de/Navigation/EN/Home/home.html)
104
+ through the project [OpenGPT-X](https://opengpt-x.de/en/) (project no. 68GX21007D).