File size: 2,346 Bytes
849f639 30d3832 849f639 30d3832 849f639 30d3832 849f639 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
datasets:
- minds14
metrics:
- accuracy
model-index:
- name: my_awesome_lang_class_mind_model
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: minds14
type: minds14
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.21236230110159118
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_lang_class_mind_model
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the minds14 dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3072
- Accuracy: 0.2124
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.597 | 1.0 | 51 | 2.5777 | 0.1481 |
| 2.4608 | 1.99 | 102 | 2.4484 | 0.1567 |
| 2.4352 | 2.99 | 153 | 2.4153 | 0.1548 |
| 2.3965 | 4.0 | 205 | 2.3796 | 0.1897 |
| 2.363 | 5.0 | 256 | 2.3622 | 0.1922 |
| 2.3369 | 5.99 | 307 | 2.3496 | 0.1854 |
| 2.292 | 6.99 | 358 | 2.3286 | 0.2038 |
| 2.2788 | 8.0 | 410 | 2.3170 | 0.2075 |
| 2.2537 | 9.0 | 461 | 2.3090 | 0.2044 |
| 2.241 | 9.95 | 510 | 2.3072 | 0.2124 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
|