File size: 2,291 Bytes
eefcf33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
library_name: transformers
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
model-index:
- name: student_videomobilevit_not_learning_RWF2000
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# student_videomobilevit_not_learning_RWF2000
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4668
- Accuracy: 0.8531
- F1: 0.8530
- Precision: 0.8542
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 20
- eval_batch_size: 20
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 180
- training_steps: 1800
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|
| 0.5117 | 2.02 | 180 | 0.4612 | 0.7844 | 0.7841 | 0.7857 |
| 0.3803 | 4.04 | 360 | 0.4049 | 0.8156 | 0.8150 | 0.8201 |
| 0.3181 | 7.02 | 540 | 0.4287 | 0.8 | 0.7989 | 0.8069 |
| 0.2548 | 9.04 | 720 | 0.4230 | 0.8094 | 0.8080 | 0.8184 |
| 0.2348 | 12.02 | 900 | 0.3655 | 0.85 | 0.85 | 0.85 |
| 0.1722 | 14.04 | 1080 | 0.3827 | 0.8594 | 0.8594 | 0.8595 |
| 0.1861 | 17.02 | 1260 | 0.4371 | 0.8562 | 0.8562 | 0.8571 |
| 0.1753 | 19.04 | 1440 | 0.4214 | 0.8438 | 0.8435 | 0.8457 |
| 0.1464 | 22.02 | 1620 | 0.5414 | 0.8438 | 0.8427 | 0.8531 |
| 0.1411 | 24.04 | 1800 | 0.4668 | 0.8531 | 0.8530 | 0.8542 |
### Framework versions
- Transformers 4.45.2
- Pytorch 2.0.1+cu118
- Datasets 3.0.1
- Tokenizers 0.20.0
|