File size: 2,352 Bytes
a344d06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
metrics:
- accuracy
base_model: distilbert-base-uncased
model-index:
- name: distilbert-base-uncased-lora-text-classification
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6098
- Accuracy: {'accuracy': 0.37777777777777777}
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------------------------------:|
| No log | 1.0 | 405 | 2.0008 | {'accuracy': 0.37037037037037035} |
| 2.0177 | 2.0 | 810 | 2.0349 | {'accuracy': 0.3802469135802469} |
| 1.8336 | 3.0 | 1215 | 2.0526 | {'accuracy': 0.35802469135802467} |
| 1.7547 | 4.0 | 1620 | 2.1418 | {'accuracy': 0.33827160493827163} |
| 1.5832 | 5.0 | 2025 | 2.2398 | {'accuracy': 0.36790123456790125} |
| 1.5832 | 6.0 | 2430 | 2.2712 | {'accuracy': 0.34814814814814815} |
| 1.4297 | 7.0 | 2835 | 2.3660 | {'accuracy': 0.3530864197530864} |
| 1.2579 | 8.0 | 3240 | 2.4898 | {'accuracy': 0.36790123456790125} |
| 1.1612 | 9.0 | 3645 | 2.5870 | {'accuracy': 0.35802469135802467} |
| 0.9591 | 10.0 | 4050 | 2.6098 | {'accuracy': 0.37777777777777777} |
### Framework versions
- PEFT 0.10.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2 |