Daemontatox commited on
Commit
db600ce
·
verified ·
1 Parent(s): 292f1df

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +118 -7
README.md CHANGED
@@ -1,22 +1,133 @@
1
  ---
2
- base_model: unsloth/deepscaler-1.5b-preview-unsloth-bnb-4bit
3
  tags:
4
  - text-generation-inference
5
  - transformers
6
  - unsloth
7
  - qwen2
8
  - trl
 
 
 
 
9
  license: apache-2.0
10
  language:
11
  - en
 
 
 
 
 
 
 
12
  ---
13
 
14
- # Uploaded model
15
 
16
- - **Developed by:** Daemontatox
17
- - **License:** apache-2.0
18
- - **Finetuned from model :** unsloth/deepscaler-1.5b-preview-unsloth-bnb-4bit
19
 
20
- This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
 
21
 
22
- [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model: unsloth/deepscaler-1.5b-preview
3
  tags:
4
  - text-generation-inference
5
  - transformers
6
  - unsloth
7
  - qwen2
8
  - trl
9
+ - reasoning
10
+ - finetune
11
+ - edge-device
12
+ - research
13
  license: apache-2.0
14
  language:
15
  - en
16
+ datasets:
17
+ - bespokelabs/Bespoke-Stratos-17k
18
+ - simplescaling/s1K
19
+ - cognitivecomputations/dolphin-r1
20
+ - openai/gsm8k
21
+ - PrimeIntellect/NuminaMath-QwQ-CoT-5M
22
+ library_name: transformers
23
  ---
24
 
25
+ ![image](./image.webp)
26
 
27
+ # **mini-Cogito-R1**
 
 
28
 
29
+ ## **Overview**
30
+ The **mini-Cogito-R1** is a lightweight, high-performance language model fine-tuned for **text generation**, **mathematical reasoning**, and **edge-device optimization**. Developed by **Daemontatox**, this model is based on the **unsloth/deepscaler-1.5b-preview** architecture and fine-tuned using the **Unsloth** framework and Huggingface's **TRL** library, achieving **2x faster training speeds** without compromising performance.
31
 
32
+ ---
33
+
34
+ ## **Key Features**
35
+ - **Efficient Training:** Leverages [Unsloth](https://github.com/unslothai/unsloth) for faster and more efficient fine-tuning.
36
+ - **Optimized for Edge Devices:** Designed to run efficiently on resource-constrained devices, making it ideal for edge computing applications.
37
+ - **Mathematical Reasoning:** Excels in tasks requiring logical and mathematical reasoning.
38
+ - **Text Generation:** Capable of generating high-quality, coherent text for a variety of applications.
39
+ - **Lightweight:** Despite its compact size (1.5B parameters), it delivers robust performance.
40
+
41
+ ---
42
+
43
+ ## **Model Details**
44
+ - **Developed by:** Daemontatox
45
+ - **Model Name:** mini-Cogito-R1
46
+ - **License:** Apache-2.0
47
+ - **Base Model:** unsloth/deepscaler-1.5b-preview
48
+ - **Fine-Tuned From:** unsloth/deepscaler-1.5b-preview-unsloth-bnb-4bit
49
+ - **Framework:** Unsloth + Huggingface TRL
50
+ - **Language:** English
51
+
52
+ ---
53
+
54
+ ## **Training Datasets**
55
+ The **mini-Cogito-R1** model was fine-tuned on a diverse set of high-quality datasets to enhance its reasoning, mathematical, and text-generation capabilities. These datasets include:
56
+
57
+ 1. **PrimeIntellect/NuminaMath-QwQ-CoT-5M**
58
+ - A large-scale dataset focused on mathematical reasoning and chain-of-thought (CoT) problem-solving.
59
+
60
+ 2. **openai/gsm8k**
61
+ - A dataset of grade-school math problems designed to test mathematical reasoning and problem-solving skills.
62
+
63
+ 3. **cognitivecomputations/dolphin-r1**
64
+ - A dataset for instruction-following and reasoning tasks, enhancing the model's ability to understand and execute complex instructions.
65
+
66
+ 4. **simplescaling/s1K**
67
+ - A lightweight dataset for general-purpose text generation and reasoning tasks.
68
+
69
+ 5. **bespokelabs/Bespoke-Stratos-17k**
70
+ - A dataset tailored for edge-device optimization and efficient text generation.
71
+
72
+ ---
73
+
74
+ ## **Use Cases**
75
+ - **Edge Computing:** Deploy on edge devices for real-time text generation and reasoning tasks.
76
+ - **Educational Tools:** Assist in solving mathematical problems and logical reasoning exercises.
77
+ - **Content Creation:** Generate high-quality text for blogs, articles, and creative writing.
78
+ - **Research:** Explore efficient training techniques and lightweight model architectures.
79
+
80
+ ---
81
+
82
+ ## **Performance**
83
+ The **mini-Cogito-R1** was fine-tuned **2x faster** using Unsloth's optimized training pipeline, making it a cost-effective solution for developers and researchers. It maintains high accuracy and efficiency, particularly in mathematical reasoning and text generation tasks.
84
+
85
+ ---
86
+
87
+ ## **How to Use**
88
+ You can load and use the model with Huggingface's `transformers` library:
89
+
90
+ ```python
91
+ from transformers import AutoModelForCausalLM, AutoTokenizer
92
+
93
+ model_name = "Daemontatox/mini-Cogito-R1"
94
+ model = AutoModelForCausalLM.from_pretrained(model_name)
95
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
96
+
97
+ inputs = tokenizer("Solve for x: 2x + 5 = 15", return_tensors="pt")
98
+ outputs = model.generate(**inputs)
99
+ print(tokenizer.decode(outputs[0]))
100
+ ```
101
+
102
+ ---
103
+
104
+ ## **Acknowledgments**
105
+ - **Unsloth Team:** For their groundbreaking work on efficient model training.
106
+ - **Huggingface:** For providing the TRL library and ecosystem.
107
+ - **Open Source Community:** For continuous support and contributions.
108
+
109
+ ---
110
+
111
+ ## **License**
112
+ This model is licensed under the **Apache-2.0** license. For more details, see the [LICENSE](https://www.apache.org/licenses/LICENSE-2.0) file.
113
+
114
+ ---
115
+
116
+ ## **Connect with the Developer**
117
+ - **GitHub:** [Daemontatox](https://github.com/Daemontatox)
118
+ - **Huggingface Model Hub:** [mini-Cogito-R1](https://huggingface.co/Daemontatox/mini-Cogito-R1)
119
+
120
+ ---
121
+
122
+ [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
123
+
124
+ ---
125
+
126
+ ### **Dataset References**
127
+ - **NuminaMath-QwQ-CoT-5M:** [PrimeIntellect](https://huggingface.co/datasets/PrimeIntellect/NuminaMath-QwQ-CoT-5M)
128
+ - **GSM8K:** [OpenAI](https://huggingface.co/datasets/openai/gsm8k)
129
+ - **Dolphin-R1:** [Cognitive Computations](https://huggingface.co/datasets/cognitivecomputations/dolphin-r1)
130
+ - **S1K:** [Simple Scaling](https://huggingface.co/datasets/simplescaling/s1K)
131
+ - **Bespoke-Stratos-17k:** [Bespoke Labs](https://huggingface.co/datasets/bespokelabs/Bespoke-Stratos-17k)
132
+
133
+ ---