Daemontatox commited on
Commit
968d7bf
·
verified ·
1 Parent(s): ce8e80c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +115 -7
README.md CHANGED
@@ -1,22 +1,130 @@
1
  ---
2
- base_model: unsloth/qwq-32b-preview-bnb-4bit
 
3
  tags:
4
  - text-generation-inference
5
  - transformers
6
  - unsloth
7
  - qwen2
8
  - trl
 
 
 
9
  license: apache-2.0
10
  language:
11
  - en
 
 
 
 
 
 
 
 
12
  ---
 
 
13
 
14
- # Uploaded model
15
 
16
- - **Developed by:** Daemontatox
17
- - **License:** apache-2.0
18
- - **Finetuned from model :** unsloth/qwq-32b-preview-bnb-4bit
19
 
20
- This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
21
 
22
- [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model:
3
+ - unsloth/QwQ-32B-Preview
4
  tags:
5
  - text-generation-inference
6
  - transformers
7
  - unsloth
8
  - qwen2
9
  - trl
10
+ - reason
11
+ - Chain-of-Thought
12
+ - deep thinking
13
  license: apache-2.0
14
  language:
15
  - en
16
+ datasets:
17
+ - bespokelabs/Bespoke-Stratos-17k
18
+ - Daemontatox/Deepthinking-COT
19
+ - Daemontatox/Qwqloncotam
20
+ - Daemontatox/Reasoning_am
21
+ library_name: transformers
22
+ new_version: Daemontatox/PathfinderAI5.0
23
+ pipeline_tag: text-generation
24
  ---
25
+ ![image](./image.webp)
26
+ # **PathfinderAI 5.0**
27
 
28
+ ## **Model Overview**
29
 
30
+ This model is a fine-tuned version of **FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview**, based on the **Qwen2** architecture. It has been optimized using **Unsloth** for significantly improved training efficiency, reducing compute time by **2x** while maintaining high performance across various NLP benchmarks.
 
 
31
 
32
+ Fine-tuning was performed using **Hugging Face’s TRL (Transformers Reinforcement Learning) library**, ensuring adaptability for **complex reasoning, natural language generation (NLG), and conversational AI** tasks.
33
 
34
+ ## **Model Details**
35
+
36
+ - **Developed by:** Daemontatox
37
+ - **Base Model:** [FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview)
38
+ - **License:** Apache-2.0
39
+ - **Model Type:** Qwen2-based large-scale transformer
40
+ - **Optimization Framework:** [Unsloth](https://github.com/unslothai/unsloth)
41
+ - **Fine-tuning Methodology:** LoRA (Low-Rank Adaptation) & Full Fine-Tuning
42
+ - **Quantization Support:** 4-bit and 8-bit for deployment on resource-constrained devices
43
+ - **Training Library:** [Hugging Face TRL](https://huggingface.co/docs/trl/)
44
+
45
+ ---
46
+
47
+ ## **Training & Fine-Tuning Details**
48
+
49
+ ### **Optimization with Unsloth**
50
+ Unsloth significantly accelerates fine-tuning by reducing memory overhead and improving hardware utilization. The model was fine-tuned **twice as fast** as conventional methods, leveraging **Flash Attention 2** and **PagedAttention** for enhanced performance.
51
+
52
+
53
+
54
+ ### **Fine-Tuning Method**
55
+ The model was fine-tuned using **parameter-efficient techniques**, including:
56
+ - **QLoRA (Quantized LoRA)** for reduced memory usage.
57
+ - **Full fine-tuning** on select layers to maintain original capabilities while improving specific tasks.
58
+ - **RLHF (Reinforcement Learning with Human Feedback)** for improved alignment with human preferences.
59
+
60
+ ---
61
+
62
+
63
+ ---
64
+
65
+ ## **Intended Use & Applications**
66
+
67
+ ### **Primary Use Cases**
68
+ - **Conversational AI**: Enhances chatbot interactions with **better contextual awareness** and logical coherence.
69
+ - **Text Generation & Completion**: Ideal for **content creation**, **report writing**, and **creative writing**.
70
+ - **Mathematical & Logical Reasoning**: Can assist in **education**, **problem-solving**, and **automated theorem proving**.
71
+ - **Research & Development**: Useful for **scientific research**, **data analysis**, and **language modeling experiments**.
72
+
73
+ ### **Deployment**
74
+ The model supports **4-bit and 8-bit quantization**, making it **deployable on resource-constrained devices** while maintaining high performance.
75
+
76
+ ---
77
+
78
+ ## **Limitations & Ethical Considerations**
79
+
80
+ ### **Limitations**
81
+ - **Bias & Hallucination**: The model may still **generate biased or hallucinated outputs**, especially in **highly subjective** or **low-resource** domains.
82
+ - **Computation Requirements**: While optimized, the model **still requires significant GPU resources** for inference at full precision.
83
+ - **Context Length Constraints**: Long-context understanding is improved, but **performance may degrade** on extremely long prompts.
84
+
85
+ ### **Ethical Considerations**
86
+ - **Use responsibly**: The model should not be used for **misinformation**, **deepfake generation**, or **harmful AI applications**.
87
+ - **Bias Mitigation**: Efforts have been made to **reduce bias**, but users should **validate outputs** in sensitive applications.
88
+
89
+ ---
90
+
91
+ ## **How to Use the Model**
92
+
93
+ ### **Example Code for Inference**
94
+
95
+ ```python
96
+ from transformers import AutoModelForCausalLM, AutoTokenizer
97
+
98
+ model_name = "Daemontatox/PathFinderAI5.0"
99
+
100
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
101
+ model = AutoModelForCausalLM.from_pretrained(model_name)
102
+
103
+ input_text = "Explain the significance of reinforcement learning in AI."
104
+ inputs = tokenizer(input_text, return_tensors="pt")
105
+
106
+ output = model.generate(**inputs, max_length=200)
107
+ print(tokenizer.decode(output[0], skip_special_tokens=True))
108
+
109
+ Using with Unsloth (Optimized LoRA Inference)
110
+
111
+ from unsloth import FastAutoModelForCausalLM
112
+
113
+ model = FastAutoModelForCausalLM.from_pretrained(model_name,
114
+ load_in_4bit=True # Efficient deployment
115
+ )
116
+
117
+
118
+ ---
119
+ ```
120
+
121
+ ## Acknowledgments
122
+
123
+ Special thanks to:
124
+
125
+ **Unsloth AI** for their efficient fine-tuning framework.
126
+
127
+ The open-source AI community for continuous innovation.
128
+
129
+
130
+ ---