File size: 8,257 Bytes
74a6bad
69f134f
 
74a6bad
dea730a
af2408a
dea730a
af2408a
74a6bad
 
af2408a
74a6bad
 
 
69f134f
 
03d0ed0
69f134f
 
99ede7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74a6bad
6c0cc5a
dea730a
 
74a6bad
af2408a
dea730a
 
 
 
 
 
 
 
 
 
 
 
74a6bad
dea730a
 
 
 
74a6bad
dea730a
af2408a
dea730a
 
74a6bad
dea730a
5698dda
dea730a
 
 
 
af2408a
 
dea730a
 
 
 
 
 
 
 
 
af2408a
dea730a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af2408a
dea730a
 
5698dda
dea730a
5698dda
99ede7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
---
base_model:
- meta-llama/Llama-3.3-70B-Instruct
tags:
- state-of-the-art
- reasoning
- chain-of-thought
- text-generation
- transformers
- llama
- instruction-tuning
license: apache-2.0
language:
- en
datasets:
- Daemontatox/Deepthinking-COT
- gghfez/QwQ-LongCoT-130K-cleaned
pipeline_tag: text-generation
library_name: transformers
model-index:
- name: Llama3.3-70B-CogniLink
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: wis-k/instruction-following-eval
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 69.31
      name: averaged accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FLlama3.3-70B-CogniLink
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: SaylorTwift/bbh
      split: test
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 52.12
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FLlama3.3-70B-CogniLink
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: lighteval/MATH-Hard
      split: test
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 39.58
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FLlama3.3-70B-CogniLink
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 26.06
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FLlama3.3-70B-CogniLink
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 21.4
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FLlama3.3-70B-CogniLink
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 46.37
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FLlama3.3-70B-CogniLink
      name: Open LLM Leaderboard
---
![image](./image.webp)

# Model Card: CogniLink - Redefining Reasoning AI

## Overview
CogniLink is a **state-of-the-art (SOTA) reasoning model**, engineered to set new benchmarks in logical problem-solving and chain-of-thought capabilities. Leveraging the power of LLaMA 3.3 70B, CogniLink excels in multi-step reasoning, inference, and real-time decision-making across diverse domains. Whether tackling mathematical proofs, legal analyses, or dynamic real-world scenarios, CogniLink ensures clarity, precision, and scalability. 

Designed for both **high-performance tasks** and **resource-efficient environments**, CogniLink represents the perfect fusion of innovation and practicality.

---

## Key Features
- **Base Model:** [unsloth/llama-3.3-70b-instruct](https://huggingface.co/unsloth/llama-3.3-70b-instruct-bnb-4bit)  
- **Developed By:** Daemontatox  
- **License:** Apache 2.0 (open and permissive)  
- **Primary Language:** English  
- **Specialization:** Multi-domain reasoning, step-by-step logic, and advanced inference.  

**CogniLink is optimized for tasks requiring:**  
- **Reasoning Depth:** Multi-step logic with exceptional accuracy.  
- **Chain-of-Thought (CoT):** Built-in mechanisms to generate clear, stepwise reasoning paths.  
- **Resource Efficiency:** Ideal for deployment on both high-performance servers and resource-constrained devices, including edge computing platforms.  

---

## Training and Optimization
CogniLink’s fine-tuning was accelerated using **[Unsloth](https://github.com/unslothai/unsloth)**, enabling a **2x faster training pipeline**. The training process was powered by Hugging Face's **TRL library**, ensuring seamless instruction tuning and robust adaptability across reasoning-heavy applications.

With advanced techniques like **quantization-aware training** and parameter-efficient fine-tuning, CogniLink is lightweight without compromising on performance, making it a top choice for edge deployment and embedded systems.

Special thanks to **[Modal.com](https://modal.com)** for providing **H100 GPUs**, which enabled accelerated training and optimized performance for CogniLink. Their generous support significantly contributed to the model’s development and deployment readiness.


---

## Applications
CogniLink is versatile and excels in various industries:

### **1. Education and Training**
- Powers AI tutors for **step-by-step problem-solving** in STEM education.
- Supports interactive learning tools with detailed explanations.

### **2. Research and Academia**
- Assists researchers with **hypothesis testing**, complex analysis, and paper drafting.  
- Enhances productivity in tasks requiring deep logical reasoning.

### **3. Business Decision Support**
- Real-time **scenario analysis** for strategic decision-making.  
- Risk assessment tools for dynamic business environments.

### **4. Legal and Policy Analysis**
- Enables multi-step reasoning for **case law interpretations** and **regulatory reviews**.  
- Assists legal professionals with clear and logical argument generation.

### **5. Healthcare AI**
- Supports diagnostics and medical workflows with robust reasoning models.
- Ensures accuracy in multi-step inferential tasks like patient case reviews.

---

## Technical Specifications
- **Quantization:** Fully compatible with 4-bit inference for efficient performance.  
- **Latency:** Optimized for real-time responses in latency-sensitive applications.  
- **Scalability:** Deployable on diverse hardware setups, from high-end GPUs to edge devices.  

---

## Why Choose CogniLink?
CogniLink isn’t just a model; it’s a **reasoning companion**. Its fine-tuned chain-of-thought design ensures not just answers, but **rational, explainable processes**, giving users the confidence and insights they need to make critical decisions.  

- **Transparent Reasoning:** Every decision is backed by a logical thought process.  
- **Versatile Applications:** From academia to business, CogniLink adapts effortlessly.  
- **Cutting-Edge Efficiency:** High performance meets cost-effectiveness.  

---

## Get Started
CogniLink is available for download and deployment. Start integrating advanced reasoning into your applications today!

For inquiries, contributions, or support, visit **[Unsloth GitHub](https://github.com/unslothai/unsloth)**.

**CogniLink: Connecting Intelligence with Clarity.**
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/Daemontatox__Llama3.3-70B-CogniLink-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=Daemontatox%2FLlama3.3-70B-CogniLink&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!

|      Metric       |Value (%)|
|-------------------|--------:|
|**Average**        |    42.47|
|IFEval (0-Shot)    |    69.31|
|BBH (3-Shot)       |    52.12|
|MATH Lvl 5 (4-Shot)|    39.58|
|GPQA (0-shot)      |    26.06|
|MuSR (0-shot)      |    21.40|
|MMLU-PRO (5-shot)  |    46.37|