File size: 8,257 Bytes
74a6bad 69f134f 74a6bad dea730a af2408a dea730a af2408a 74a6bad af2408a 74a6bad 69f134f 03d0ed0 69f134f 99ede7d 74a6bad 6c0cc5a dea730a 74a6bad af2408a dea730a 74a6bad dea730a 74a6bad dea730a af2408a dea730a 74a6bad dea730a 5698dda dea730a af2408a dea730a af2408a dea730a af2408a dea730a 5698dda dea730a 5698dda 99ede7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
---
base_model:
- meta-llama/Llama-3.3-70B-Instruct
tags:
- state-of-the-art
- reasoning
- chain-of-thought
- text-generation
- transformers
- llama
- instruction-tuning
license: apache-2.0
language:
- en
datasets:
- Daemontatox/Deepthinking-COT
- gghfez/QwQ-LongCoT-130K-cleaned
pipeline_tag: text-generation
library_name: transformers
model-index:
- name: Llama3.3-70B-CogniLink
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 69.31
name: averaged accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FLlama3.3-70B-CogniLink
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 52.12
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FLlama3.3-70B-CogniLink
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 39.58
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FLlama3.3-70B-CogniLink
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 26.06
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FLlama3.3-70B-CogniLink
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 21.4
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FLlama3.3-70B-CogniLink
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 46.37
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FLlama3.3-70B-CogniLink
name: Open LLM Leaderboard
---

# Model Card: CogniLink - Redefining Reasoning AI
## Overview
CogniLink is a **state-of-the-art (SOTA) reasoning model**, engineered to set new benchmarks in logical problem-solving and chain-of-thought capabilities. Leveraging the power of LLaMA 3.3 70B, CogniLink excels in multi-step reasoning, inference, and real-time decision-making across diverse domains. Whether tackling mathematical proofs, legal analyses, or dynamic real-world scenarios, CogniLink ensures clarity, precision, and scalability.
Designed for both **high-performance tasks** and **resource-efficient environments**, CogniLink represents the perfect fusion of innovation and practicality.
---
## Key Features
- **Base Model:** [unsloth/llama-3.3-70b-instruct](https://huggingface.co/unsloth/llama-3.3-70b-instruct-bnb-4bit)
- **Developed By:** Daemontatox
- **License:** Apache 2.0 (open and permissive)
- **Primary Language:** English
- **Specialization:** Multi-domain reasoning, step-by-step logic, and advanced inference.
**CogniLink is optimized for tasks requiring:**
- **Reasoning Depth:** Multi-step logic with exceptional accuracy.
- **Chain-of-Thought (CoT):** Built-in mechanisms to generate clear, stepwise reasoning paths.
- **Resource Efficiency:** Ideal for deployment on both high-performance servers and resource-constrained devices, including edge computing platforms.
---
## Training and Optimization
CogniLink’s fine-tuning was accelerated using **[Unsloth](https://github.com/unslothai/unsloth)**, enabling a **2x faster training pipeline**. The training process was powered by Hugging Face's **TRL library**, ensuring seamless instruction tuning and robust adaptability across reasoning-heavy applications.
With advanced techniques like **quantization-aware training** and parameter-efficient fine-tuning, CogniLink is lightweight without compromising on performance, making it a top choice for edge deployment and embedded systems.
Special thanks to **[Modal.com](https://modal.com)** for providing **H100 GPUs**, which enabled accelerated training and optimized performance for CogniLink. Their generous support significantly contributed to the model’s development and deployment readiness.
---
## Applications
CogniLink is versatile and excels in various industries:
### **1. Education and Training**
- Powers AI tutors for **step-by-step problem-solving** in STEM education.
- Supports interactive learning tools with detailed explanations.
### **2. Research and Academia**
- Assists researchers with **hypothesis testing**, complex analysis, and paper drafting.
- Enhances productivity in tasks requiring deep logical reasoning.
### **3. Business Decision Support**
- Real-time **scenario analysis** for strategic decision-making.
- Risk assessment tools for dynamic business environments.
### **4. Legal and Policy Analysis**
- Enables multi-step reasoning for **case law interpretations** and **regulatory reviews**.
- Assists legal professionals with clear and logical argument generation.
### **5. Healthcare AI**
- Supports diagnostics and medical workflows with robust reasoning models.
- Ensures accuracy in multi-step inferential tasks like patient case reviews.
---
## Technical Specifications
- **Quantization:** Fully compatible with 4-bit inference for efficient performance.
- **Latency:** Optimized for real-time responses in latency-sensitive applications.
- **Scalability:** Deployable on diverse hardware setups, from high-end GPUs to edge devices.
---
## Why Choose CogniLink?
CogniLink isn’t just a model; it’s a **reasoning companion**. Its fine-tuned chain-of-thought design ensures not just answers, but **rational, explainable processes**, giving users the confidence and insights they need to make critical decisions.
- **Transparent Reasoning:** Every decision is backed by a logical thought process.
- **Versatile Applications:** From academia to business, CogniLink adapts effortlessly.
- **Cutting-Edge Efficiency:** High performance meets cost-effectiveness.
---
## Get Started
CogniLink is available for download and deployment. Start integrating advanced reasoning into your applications today!
For inquiries, contributions, or support, visit **[Unsloth GitHub](https://github.com/unslothai/unsloth)**.
**CogniLink: Connecting Intelligence with Clarity.**
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/Daemontatox__Llama3.3-70B-CogniLink-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=Daemontatox%2FLlama3.3-70B-CogniLink&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
| Metric |Value (%)|
|-------------------|--------:|
|**Average** | 42.47|
|IFEval (0-Shot) | 69.31|
|BBH (3-Shot) | 52.12|
|MATH Lvl 5 (4-Shot)| 39.58|
|GPQA (0-shot) | 26.06|
|MuSR (0-shot) | 21.40|
|MMLU-PRO (5-shot) | 46.37|
|