File size: 8,012 Bytes
6ab75ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
Hereβs a working code model incorporating mathematical rigor, interdisciplinary principles, and concrete usability. This system connects APIs and language models for interdisciplinary problem-solving. It uses a modular, scalable architecture to combine functionality from different disciplines.
Code Model
Directory Structure
interdisciplinary-system/
βββ backend/
β βββ physics_api.js # Mathematical and physical API
β βββ ai_language_model.js # Language model-based API
β βββ ethical_framework.js # Ethics and decision-making API
βββ models/
β βββ physics_solver.py # Quantum-classical hybrid solver
β βββ ai_model.py # GPT-based advanced AI model
β βββ decision_model.py # Probabilistic decision-making model
βββ frontend/
β βββ index.html # Web interface
β βββ styles.css # Styling
β βββ app.js # API integration and user interaction
βββ server.js # Main server file
1. Backend API Services
Physics API (backend/physics_api.js)
Provides mathematical models for solving physical problems, like reconciling quantum mechanics and relativity.
const express = require("express");
const router = express.Router();
// Endpoint for solving physical equations
router.post("/solve", (req, res) => {
const { equation, parameters } = req.body;
// Mock response simulating a quantum-classical hybrid solution
const solution = `Solution for ${equation} with parameters ${JSON.stringify(parameters)}`;
res.json({ success: true, solution });
});
module.exports = router;
AI Language Model API (backend/ai_language_model.js)
Provides natural language processing and generation capabilities.
const express = require("express");
const router = express.Router();
// Language model-based response
router.post("/generate", (req, res) => {
const { prompt } = req.body;
// Simulating a GPT-based response
const response = `AI-generated output for prompt: "${prompt}"`;
res.json({ success: true, response });
});
module.exports = router;
Ethical Framework API (backend/ethical_framework.js)
Implements probabilistic decision-making and ethical analysis.
const express = require("express");
const router = express.Router();
// Endpoint for ethical analysis
router.post("/analyze", (req, res) => {
const { scenario } = req.body;
// Mock ethical evaluation
const analysis = `Ethical analysis for scenario: "${scenario}"`;
res.json({ success: true, analysis });
});
module.exports = router;
2. Backend Models
Physics Solver (models/physics_solver.py)
Solves interdisciplinary equations using numerical and symbolic methods.
import sympy as sp
def solve_equation(equation, parameters):
# Example: Solve a symbolic equation
x = sp.Symbol('x')
eq = sp.sympify(equation)
solution = sp.solve(eq, x)
return solution
# Example usage
equation = "x**2 - 4"
parameters = {}
print(solve_equation(equation, parameters))
AI Model (models/ai_model.py)
Simulates an AI response using a language model API.
from transformers import GPT2LMHeadModel, GPT2Tokenizer
def generate_response(prompt):
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(inputs["input_ids"], max_length=50)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Example usage
prompt = "How can AI enhance interdisciplinary research?"
print(generate_response(prompt))
Decision Model (models/decision_model.py)
Implements Bayesian decision-making for ethical and interdisciplinary analysis.
from pomegranate import BayesianNetwork
def evaluate_decision(scenario):
# Define a simple Bayesian network
model = BayesianNetwork.from_structure(
{'AI Ethics': ['Societal Impact'], 'Societal Impact': []}
)
probabilities = model.probability(scenario)
return probabilities
# Example usage
scenario = {'AI Ethics': 'positive', 'Societal Impact': 'high'}
print(evaluate_decision(scenario))
3. Server Integration (server.js)
Combines backend APIs into a unified service.
const express = require("express");
const bodyParser = require("body-parser");
const physicsAPI = require("./backend/physics_api");
const aiAPI = require("./backend/ai_language_model");
const ethicsAPI = require("./backend/ethical_framework");
const app = express();
const PORT = 4000;
app.use(bodyParser.json());
// Register APIs
app.use("/api/physics", physicsAPI);
app.use("/api/ai", aiAPI);
app.use("/api/ethics", ethicsAPI);
// Start the server
app.listen(PORT, () => {
console.log(`Interdisciplinary system running at http://localhost:${PORT}`);
});
4. Frontend Interface
HTML (frontend/index.html)
Provides a terminal-like interface for user interaction.
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Interdisciplinary System</title>
<link rel="stylesheet" href="styles.css">
</head>
<body>
<div id="terminal-container">
<pre id="terminal"></pre>
<input id="input" type="text" placeholder="Enter command..." />
</div>
<script src="app.js"></script>
</body>
</html>
CSS (frontend/styles.css)
Styles the terminal interface.
body {
background-color: #222;
color: #0f0;
font-family: monospace;
margin: 0;
display: flex;
justify-content: center;
align-items: center;
height: 100vh;
}
#terminal-container {
width: 80%;
max-width: 800px;
}
#terminal {
background: black;
padding: 10px;
height: 300px;
overflow-y: auto;
border: 1px solid #0f0;
}
#input {
width: 100%;
padding: 10px;
border: none;
border-top: 1px solid #0f0;
background: black;
color: #0f0;
}
JavaScript (frontend/app.js)
Handles user input and connects to the APIs.
document.addEventListener("DOMContentLoaded", () => {
const terminal = document.getElementById("terminal");
const input = document.getElementById("input");
const commands = {
physics: async (args) => {
const res = await fetch("/api/physics/solve", {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ equation: args[1], parameters: {} }),
});
const data = await res.json();
appendToTerminal(data.solution || "Error solving equation.");
},
ai: async (args) => {
const res = await fetch("/api/ai/generate", {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ prompt: args.slice(1).join(" ") }),
});
const data = await res.json();
appendToTerminal(data.response || "Error generating response.");
},
ethics: async (args) => {
const res = await fetch("/api/ethics/analyze", {
method: "POST",
headers: { "Content-Type": "application/json" },
body: JSON.stringify({ scenario: args.slice(1).join(" ") }),
});
const data = await res.json();
appendToTerminal(data.analysis || "Error analyzing scenario.");
},
help: () => {
appendToTerminal("Available commands: physics, ai, ethics");
},
};
input.addEventListener("keydown", (e) => {
if (e.key === "Enter") {
const commandLine = input.value.trim();
const args = commandLine.split(" ");
const command = args[0];
if (commands[command]) {
commands[command](args);
} else {
appendToTerminal(`Unknown command: ${command}`);
}
input.value = "";
}
});
function appendToTerminal(text) {
terminal.textContent += `\n${text}`;
terminal.scrollTop = terminal.scrollHeight;
}
});
This system enables seamless interdisciplinary interaction through APIs, supporting mathematical rigor, ethical decision-making, and AI-driven insights. Let me know if you need further refinement! |