# handler.py from typing import Dict, Any import torch from transformers import AutoTokenizer, AutoModelForCausalLM from accelerate import init_empty_weights, load_checkpoint_and_dispatch class EndpointHandler: def __init__(self, model_dir: str, **kw): self.tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True) # ① 空壳模型 with init_empty_weights(): base = AutoModelForCausalLM.from_pretrained( model_dir, torch_dtype=torch.float16, trust_remote_code=True ) # ② 分片加载 self.model = load_checkpoint_and_dispatch( base, checkpoint=model_dir, device_map="auto", dtype=torch.float16 ).eval() # ③ 锁定“默认 GPU”= 词嵌入所在 GPU self.embed_device = self.model.get_input_embeddings().weight.device torch.cuda.set_device(self.embed_device) # ← 关键 1 print(">>> embedding on", self.embed_device) # 生成参数 self.gen_kwargs = dict(max_new_tokens=512, temperature=0.7, top_p=0.9, do_sample=True) def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: prompt = data["inputs"] # 把 *所有* 输入张量放到 embed_device inputs = self.tokenizer(prompt, return_tensors="pt").to(self.embed_device) # ← 关键 2 with torch.inference_mode(): out_ids = self.model.generate(**inputs, **self.gen_kwargs) return {"generated_text": self.tokenizer.decode(out_ids[0], skip_special_tokens=True)}