yuzhe commited on
Commit
ef9c5ef
·
verified ·
1 Parent(s): e001134

Create handler.py

Browse files
Files changed (1) hide show
  1. handler.py +48 -0
handler.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import (
2
+ AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline
3
+ )
4
+ import torch, os
5
+
6
+ MODEL_ID = "Qwen/Qwen3-8B-Instruct" # 换成自己的模型
7
+
8
+ def get_model():
9
+ # ① 先试 bfloat16,A100/H100 都原生支持
10
+ return AutoModelForCausalLM.from_pretrained(
11
+ MODEL_ID,
12
+ torch_dtype=torch.bfloat16,
13
+ device_map="auto", # TGI 同款逻辑,自动分片
14
+ low_cpu_mem_usage=True, # 先在 CPU 建图,再流式拷到 GPU
15
+ trust_remote_code=True
16
+ )
17
+
18
+ # ---- 如果 bfloat16 仍 OOM,可改成 4-bit 量化 ----
19
+ # bnb_cfg = BitsAndBytesConfig(
20
+ # load_in_4bit=True,
21
+ # bnb_4bit_quant_type="nf4",
22
+ # bnb_4bit_use_double_quant=True,
23
+ # )
24
+ # def get_model():
25
+ # return AutoModelForCausalLM.from_pretrained(
26
+ # MODEL_ID,
27
+ # device_map="auto",
28
+ # quantization_config=bnb_cfg,
29
+ # trust_remote_code=True
30
+ # )
31
+
32
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
33
+ model = get_model()
34
+ generator = pipeline(
35
+ "text-generation",
36
+ model=model,
37
+ tokenizer=tokenizer,
38
+ device_map="auto",
39
+ torch_dtype=getattr(model, "dtype", torch.bfloat16),
40
+ )
41
+
42
+ def __init__(self, *args, **kwargs):
43
+ pass
44
+
45
+ def __call__(self, data):
46
+ prompt = data.get("inputs") if isinstance(data, dict) else data
47
+ outputs = generator(prompt, max_new_tokens=256)
48
+ return outputs