Delete handler.py
Browse files- handler.py +0 -48
handler.py
DELETED
@@ -1,48 +0,0 @@
|
|
1 |
-
from transformers import (
|
2 |
-
AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline
|
3 |
-
)
|
4 |
-
import torch, os
|
5 |
-
|
6 |
-
MODEL_ID = "Qwen/Qwen3-32B" # 换成自己的模型
|
7 |
-
|
8 |
-
def get_model():
|
9 |
-
# ① 先试 bfloat16,A100/H100 都原生支持
|
10 |
-
return AutoModelForCausalLM.from_pretrained(
|
11 |
-
MODEL_ID,
|
12 |
-
torch_dtype=torch.bfloat16,
|
13 |
-
device_map="auto", # TGI 同款逻辑,自动分片
|
14 |
-
low_cpu_mem_usage=True, # 先在 CPU 建图,再流式拷到 GPU
|
15 |
-
trust_remote_code=True
|
16 |
-
)
|
17 |
-
|
18 |
-
# ---- 如果 bfloat16 仍 OOM,可改成 4-bit 量化 ----
|
19 |
-
# bnb_cfg = BitsAndBytesConfig(
|
20 |
-
# load_in_4bit=True,
|
21 |
-
# bnb_4bit_quant_type="nf4",
|
22 |
-
# bnb_4bit_use_double_quant=True,
|
23 |
-
# )
|
24 |
-
# def get_model():
|
25 |
-
# return AutoModelForCausalLM.from_pretrained(
|
26 |
-
# MODEL_ID,
|
27 |
-
# device_map="auto",
|
28 |
-
# quantization_config=bnb_cfg,
|
29 |
-
# trust_remote_code=True
|
30 |
-
# )
|
31 |
-
|
32 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
33 |
-
model = get_model()
|
34 |
-
generator = pipeline(
|
35 |
-
"text-generation",
|
36 |
-
model=model,
|
37 |
-
tokenizer=tokenizer,
|
38 |
-
device_map="auto",
|
39 |
-
torch_dtype=getattr(model, "dtype", torch.bfloat16),
|
40 |
-
)
|
41 |
-
|
42 |
-
def __init__(self, *args, **kwargs):
|
43 |
-
pass
|
44 |
-
|
45 |
-
def __call__(self, data):
|
46 |
-
prompt = data.get("inputs") if isinstance(data, dict) else data
|
47 |
-
outputs = generator(prompt, max_new_tokens=256)
|
48 |
-
return outputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|